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L Consistency of MLEs

Consistency of MLEs

Let L(60) be a likelihood function and 8y € ® denote the true parameter. If
(i) 6o is an interior point of ©,

(i) There exists a sufficiently small number a > 0 and a nonrandom matrix G(0) such that for
any 6@ € Bq(6p) ={0: |6 — 09| < a},

2
cup ‘_l o°ue) G(G)H 0 in probability,
och vop) || n 06:00,
inf  Anin(G(0)) > 0,
6cB,(60)

where £(0) = log L(6),
(iii) 2£(60) = Op(v/n),

@ For a vector v, ||v|| denotes the Euclidean norm of v.

@ For a matrix V/, ||V/|| denotes the spectral norm of V.



Maximum Likelihood Estimates: Asymptotic Properties
LConsistency of MLEs

then the likelihood equation
04(0)

50 = 0 (1)
has a root 8, satisfying
6, — 6y in probability. (2)
Moreover, if
(iv) P (aoo) > SUPg. e (gy) e(o)) S,
then
6,, = argmax L(8) — 6y in probability. 3)

0c®
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@ Let 6, be the solution of (1) closest to 8. We will first show that for any 0 < € < a (note
that a is defined in (ii)),

P sup £(0) < £(6p) | -1 as n — oo, (4)
6cB}(6p)

where B:(eo) = Ea(eo) — BE(OO).
@ Relation (4) implies

P (én € BG(BO)) = P(there exists a solution of (1) lying in Bc(6p)) — 1 as n — oo,

and hence the desired conclusion (2) follows.

@ Define
2
E,(%) = inf  Amin (,l o @(9)) <d,,
0cB,(00) n BOZBHJ

where § > 0 is arbitrarily small.
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Then, on the set E¢ (§) (the complement of E;,(0)), one has by Taylor's theorem,

sup  £(6) — £(60)

6cBX(00)
why? 00(6,
< s |20 -
0Bz (60) Il 00
920(0%)
- 0 — 6 0" — 0y < |6 -6
= ety 50 =00 (<S55 ) =60 (o~ o0l < 00
Hazeo) I (_a%(e))
- 2 6cBa(00)  \ 00;06;

o). 2.
:

This and condition (iii) yield

2
P sup £(0) —£(0p) > 0, Ey, (9) SP(HMHaZ E—né) — 0 as n — oo. (5)
0€Bx(80) 00 2
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@ In view of (5), (4) follows if we can show that for any €1 > 0, there exists a sufficiently
large N and sufficiently small § > 0 such that for all n > N,

P(En(9)) < e (6)

2
@ To show (6), denote —% ge.zgg). by A, (0). Then,
100

)‘min(An(e)) > )‘min(An(e) - G(O)) + )‘min(G(e))
> Amin(G(0)) — [ An(6) — G(6)],

yielding
inf  Amin(An(0)) >  Inf  Anin(G(0)) — sup ||An(8) — G(0)].
0€Ba(60) 0€B4(00) 6cB,(0p)

This and condition (ii) give (6). Thus, (2) is proved.
@ Finally, it follows from (4) and (iv) that
P sup £(0) < €(6g) | -1 as n — oo,
6 BE(6)

which implies 0, converges O in probability.
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regression model

Logistic Regression Model

@ Recall logistic regression. For i = 1,...,n, assume
e®iPo Pi,0 /
P(Y;=1)=1—-P(Y; =0) = ——— = pi,0, log | ——— ) = =;80
14 ¢®iPo 1—pio

where x; is the explanatory vector and B¢ is an unknown regression coefficient vector.
@ Therefore, the likelihood function is (assuming Y; are independent)

L(B)=PMi=vyi1,..., n—yn)—Hp (1—p)tYi,

where p; = e zﬁ/(l + emlﬁ) and 3 € B, the parameter space, and the log-likelihood function is

n

0(8) = log L(B) = > [yi log(p:) + (1 — i) log(1 — py)]

i=1

—Zyﬁog( >+Zlog1—pl)—2y1wﬁ Zlog(l-‘rel ).

@ Moreover,

o
oePB) __ n _ n iB _ n . . i B _ n N
8 — 2ui=1TiYi i=1 e 5 = Zizl T (yz 1+emzﬁ i B=py =1 i (Yi —Pi,0)-
® Note that y; = B(y:) + (u: — B(y:) = Pi,0 + €i where €; ~ (0,pi,0(1 — pi,0))-
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Logi gression model

Define 8 = argmaxge g¢(B). Does B converges to (3p in probability?
(0) Bo is an interior point of B, < This can be assumed.

1) J7256Y = 0pD),

\lf Oétggo) \/1% ", xi€; in linear regression model.
: _ _(_10%B)
(2) P(lnfﬁeB (Bo) Amin (=7 Bﬁiﬁﬁj) > §) — 1, where § and a are small constants and

B (50) ={B:IB—Boll < a},
_19%B) _
7 9B,08;

(3) P(¢(Bo) > SUPBeBC (80) {B)) — 1.
In linear regression model,

Z i=-53 Z(y, —@iBo)? >~ LS - wlB)?, B B()

i=1 i=1 i=1

= lX’X in linear regression model.

because

1 n
—5z Wi @B = —o—5 > (v —@iBo + @(Bo - B))°
i i=1
B B 1 n ‘ , B )
= 53 ;1( + (B0 — B))

N 2;2{26 +(Bo — B8 <wa> ﬁoﬁ)}~

=1
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@ For (1), does L 2¢P0) _ ﬁ >ois1®i(yi — pi0) = Op(1)? Note that

Vn 0B
1 BZ(IHO) <8Z(ﬁ0)>,> 1< ’ 1< /
—E = — x;x; Var(y; = 75 x;x;pio(l — ps
" ( 8,6 6,3 n & iy (yz) n & i 7,171,0( Pz,O)
1 ’7
- -X'DyX
n
1.
S Amax ;X X Amax(DO)
< A ! x'x i (1 )
< max ( ,in pio Di,0
1 1,
< Smax [ —X'X) .
4 n
where Do = diag(p1,0(1 —p1,0),-.-5Pn,0(1 —Pn,0)). If )\max(%X’X) is bounded, then (1) holds.
. 1 0%¢8) 1yt =i
@ For (2), since —5 57755 ~ 7 X DX where D = diag(p1(1 — p1),...,pn(1 — pn)), we have
9P

1 1
inf  Amin <7X'DX> > Amin <7X/X> inf min p;(1 — p;)-
BEBa(Bo) n n BEBa(Bp) 1=i=n

Therefore, (2) holds if )\m;n(%X’X) > ¢; > 0 and infge p mini<;<p, pi(1 — pi) > ¢y > 0 for all
large n, where ¢, and c, are some positive constants.
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istic regression model

Remark (cont.)

@ For (3), it can be shown through (0)—(2) that
P (f(,@o) > sup Z(,B)) — 1,
BE(Ba(Bo)—Be(Bo))

for any € > 0. Moreover, since

GXE) o -X'DX
0B:9p; ’

which is negative definite (assuming X' X is p.d. and min;<;<n pi(1 — p;) is bounded away from 0
in B) and hence £(8) is a convex function, (3) follows.
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A central limit theorem for MLEs

@ Define
7 = argmin £(n),
neaA

where £(m) is the log-likelihood function and the true parameter 7, is an interior point of
the parameter space A.

@ | have shown in my previous note that
~ DT
n—"-

@ In the following, | will present a CLT for 7} using a way far from being rigorous.
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@ Note that

_ ot) _ 9tno) 926(n*)

0
on on On;Om;

(N =), ™

where [[n* — || < (|9 —nq -

@ Since it can be shown that n* — 7, in probability (because 7 — m,, in probability), we
have by (7) and some tedious arguments (which we skip in this note),

e[ ()] 0

(m™ in (7) has been replaced here.)
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Assume
(22 1 (o)) ()] g
n 9n;0n; n on on n—00 0)s
and
2 2
19%(n,) E (EM) P25 0. (zero matrix)
n 0n;0n; n On;0n;
Then
LO%Ung) e,y
n On;0n; o
and hence
-1
_ (EM) 2 1 (). ©)
n On;0n; ’
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@ Under certain regularity conditions, it can be shown that

i 86("70) d

N — N(0,1I(n,))- (10)
@ By (8)—(10) and Slutsky's Theorem,
Va(n —my) % N0, 17 (my)). (11)
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LA central limit theorem for MLEs

L Example

Consider logistic regression model. Does +/n(8 — Bo) 4, N(0, A), for some A?

o By 2UB) L 94B0) | 926(Bo) (5 _ 3.) we have

B ELE] 9B;08B;
. . 1920(Bo)\ " 1 0¢(Bo)
3°£(Bo) 3%¢(Bo) | Pr-
@ Assume % aﬁiaﬁoj —-F <% 6,81‘8/%-) — 0 and
102 1 !
p(-LEABY _p (10480 (3B0)Y ) o)
n 0B;0B; n 0B [2J¢] n—oo
Then
1 824(B0) R e ,
- 9508, ~ o ;%‘wmi,o(l — pi,0) e G.
@ Since %%’go) = ﬁ >4 @€, it follows from Lindeberg’s CLT that

1 n
Tn Zmiq LN N(0,G),
i=1

and hence v/n(8 — Bo) 4, N(0,G™1).
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L Example

Example 11

independent
2 N(

. ’ .
@ Consider y; B0, €®10), or equivalently,

yi = i Bo + 04,063,
. FN pid.
with 0; 0 = e2%:1*0 and ¢; ~~ N(0,1).

@ log-likelihood function

n

1 1 / —zla
Um) = 6(B.0) = T log (2m) — - > ale — 0> (y — wiB)’e ",
i=1

i=1
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A central limit theorem for MLEs

L Example

@ To illustrate (11), we start by considering the special case where o; o = 1 or equivalently,
ap = 0. Then,
iid.
yi = xBo + e, € = N(0,1).

@ In addition,
n 1< ) 2
UB) = =5 log (2m) = 5 > (v — =iB)%,
i=1

yielding

9t(Bo) _ > @iy —@iBo) = > wiei.
oB i1 i=1

@ Note that we've shown before

1 0Bo) 1 <~ 4
Tn 0B —\/ﬁ;wlezﬂN(O,R),

where R = limy, 00 % >or 4 @i (assuming the limit exists).
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A central limit theorem for MLEs

ample

@ Moreover, we have

PUBo) N~
EX S

hence
1.0%4(Bo)
n 0B;08;

@ As a result, we have by (11),

Va8 - Bo) & N(0,R™Y),

which coincides with the result that we've obtained for LSE. (Noting that in this example,
we assume o2 = 1.)
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A central limit theorem for MLEs

L Example

We now get back to the general case ag # 0.

o(n,)
oB

94(n,)
da

826("70)

0p3:08;

a2‘6(770 )
Baiaaj

0%6(ny)
0c; 0B,

n

Ty
§ €45

i=1 74,0

2
i=1 9i0

1 n iiw; 2
(), (s
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Maximum
LA centr

Example

t theorem for MLEs

@ Assume
n

Then,
_18%my) o, (B 0 )
n On:on; 0 3R

@ Moreover, it can be shown that

e () e @ 8)

Consequently,

. d B! 0
\/5(77—770)—>N(07( 0 2R71

(ei) =0 and Var(e;) = 1), v/n(fH) — ny) 47

If €; L (0,1) (without assuming normality; E
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A central limit theorem for MLEs

ample

@ In practice, B and R are unknown and we can use

1 < zix 1«
H_ 1 i H_ 1 o
B = - Z o7& and R = - Zwlwl
in place of B and R.

@ Moreover, it can be shown that

1
B2 0 . d
Vn L Ak (M —m,) — N(0,I),
o -LRr?
V2

which allow us to construct confidence regions for n,,.

If €; Hd, (0,1) (without assuming normality; E(e;) = 0 and Var(e;) = 1), please find

a "data-driven matrix’ D

such that

VaD(# —n,) 4 N(0, I).
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Asymptotics for likelihood ratio tests

@ Let z1,...,x, be a random sample from the pdf fg,(-), where

0o = (g(gf(”) € ® CRK,

’

69 is an interior point of ©, Bo,» and O f (), respectively, are r-dimensional and
(K — r)-dimensional vectors, and K > r.

@ For the hypothesis
Hp:00 € ® C O versus Hu: 00 ¢ O,
the likelihood ratio test rejects Hg if Ay, < C, where

A — SPoco, L(0) supgce, [Ii; folz:)
” = -

supgco L(0)  supgee [Timg fo(zi)
and 0 < C < 1 is determined by the distribution of A,, and the level of the test.
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Asymptotics for likelihood ratio tests

@ In the following, I'll show that
—2log An % X2 (dim(©) — dim(6y)).
@ Without loss of generality, we may assume
Ho: 60, =65, and Ha:00,#86;,,
and hence
©o ={0: (0% (,,05.,) € O},

where O,y is (K — r)-dimensional.
(@x(r): free parameters; ©: non-degenerate subset in RK)
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Asymptotics for likelihood ratio tests

Assume

0* = (011(7”)) = argmax L(0) and 6 = argmax L(0)
9, 0co, 6co

are unique. Then, under some regularity conditions mentioned in my previous note,

90,1 90,1
6, . ;
N . . 0 — 0, A PT. 00 K 90 K—r
o= | - | 2= | forr :(0’K<r>)7 9—>9*E( xn) _ | G
- 0 00, K —r+1 6o, Ho 0 5. 05 K —ri1
0K
0o, K 05k
and
éK(r),l

o — <éo,§<r>) _ | Ok i o, gy,
0,K—r+1 0

*
05 x
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Asymptotics for likelihood ratio tests

Now, by Taylor's theorem, we have under Hp,

!
20%) = 40 0 -]
(07) = £(85) + <89K(7-)> (O () — 00,k (r))

9°¢(65)
90,00,

1 . N
+ 5(91((@ —00,k(r)) ( Ok — 00,K(r))

)1g¢,jgk—r

+ § (7‘936(‘%) )(9 00.,:)(0 00.)(6 00.1), (12)
o Y K(r),i —Y0,i)UK(r),; —Y0,5)\VKk@),0 —Yo,),
U f2 i, \00:06,06;

~ ’
where ||04 — 05| < ||6* — 65| and 8(?927(6())) = (%‘gi)), e ,%) , and in general

0(6) = £(60) + (‘%(90))/ (6 — 0)

00
1. 920(60)\ , 4
~(0 — 6p)’ 0 —0
+5(6-60) (aaiaej ) (6 = 6o)
1 9%0(67) \ A A
S (7) (6: — 00,6 (05 — 00.5)(B) — Oo.1), (13)
Do \ 00,0000,

where |87 — 6| < ||6 — 60]|.
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Asymptotics for likelihood ratio tests

@ By the CLT for éK<T> and 6 and assuming there exists small § > 0 such that

1 93%¢(8)

—— L 1 =0,(1) for 1<4,j,l <K,
n60189]801 p() o =nd -

sup
0cB5(65)
it can be shown that under Ho, the third terms on the RHS of (12) and (13) are of order
op(1).
@ Therefore, it remains to show that

(1) — (1) % X2 (r), (14)

where

* / 2 *
0 = 2(Z) @0+ 0 -5y (58) @ 0n)
2 J

’
ACHAN

Iy = 2 0 — 6,

(11) <80K(r)> Ok () — 60,K(r))

824(05‘))

8‘92'89]' 1<i,j<K-—r

+(Or () — 00, 1) ( O () — 00,1 (r))-
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Asymptotics for likelihood ratio tests

Define
_ Olog fop (wt)
B o0

0log for (1)

and Ty K (r) = 0re(r)
.

Tt

Then, under the regularity conditions similar to those used to obtain the CLTs for 6 and éK(T),
we have

(D T X (X'X)"1 X1+ 0p(1),

_ (15)
In s VX () (X Xk (r) ™ Xy + 0p(1),

where
! T K () 1
X = . 7XK<T> = . , and 1=

/
Tn T K(r)
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Asymptotics for likelihood ratio tests

Let X1 satisfy (X g (), X—1) = X and define

o (I(KJ)AKJ) *(X%(MXK(M)*IX%(T)X*).

0rx(K—r) Irxr
Then
1X(X'X)"1Xx"1
= 1XDD'X'XD)"'D'X’'1
Y Xy Xy Xrem) ™ K1
+1/(I = Mgc(r) X1 (X2 (I = M) X-1) "' X2 (I — Mg )1, (16)
where

Mic(ry = Xic(r) (X ey Xk () ™ Xie(r)

is the orthogonal projection matrix onto C'(X g ()
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Asymptotics for likelihood ratio tests

Since

~
—
S
o
N
Il
N\
~
=
—
—
DD
[=F3=F7
N
~
=
N
—~
DD
O *O %
NN
N———
—
kel
o
—

and

under some regularity conditions, it holds that

1 . * *\ — * *
;X'_1(I—MK(T))X71 % I52(05) — I1(05) 11, (05)112(65),

1 why?
XA = Mgt 2 (X X (K X)) L) wat
= (—Ia(05)I;,"(85), Irxr) wat+op
and
_ d
V(I = Mg (r)X-1(X (T = Mg ()X 1) 7' X2 (T = Mg ()1 o X (r). 17)

Now, the desired conclusion (14) follows from (15)—(17).
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Pearson’s Chi-Squared Test with unknown parameters

@ Assume z1,...,Zy is a random sample generated from f(z). Consider

AptAp

® letp; =P(z1 € A;) = [, f(2)dz, where Ui A; =R and A; N A; =0 if i # j.

z
@ Define
Iipenny Vi1
Yi = =
Itesen,_ 1} Yik—1
Then, the likelihood function of y1,...,yn is
n P
L(p1,...,pe—1) = [ [ )" ok = pii=1vit ~~~pk2’n:1y““ =pQ1 o plk,
i=1

k-1 k—

where y; ), =1 =351 y; jand pp =1— 351 p;.
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Pearson's Chi-Squared Test with unknown parameters

@ Now Consider the null hypothesis,
Ho : pz—/ 2)dz =pi(0), i=1,...,k—1,

versus the alternative,
Hpa : Ho is wrong,
where fg(-) is a probability density function indexed by 8 € ©.

@ Then, one can use the likelihood ratio statistics

—2log An % X2 (k — 1 — dim(©)),

where
k A )
A — SUPoce L(p1(0),-- ,pk—1(9))  1lj- 1(p;(6))9
n = - 9
sups~k 1 LP1, - Pe—1) Tk, 55"

where p; = O;/n, and reject Hg if —2log Ay, is large.
@ In the following, I'll show that

. R
3 w 4 \2(k — 1 — dim(®)).

j=1 np;(0) Ho
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Pearson's Chi-Squared Test with unknown parameters

Note that under Hg,

k ~
~2logA, = 23.0,log <% —1+1>

j=1 Pj
< apa{one ol
) QJ;Oj {%M <PL@> _1“) "3 [(ﬁjﬁ;pﬁg)f <pf<Jé> _1+1>”
- iFoBp0 o nlt i 0-al (gih)
= zn;@rpj(e i ﬁ(;’;)) g -p:pz;((;)) <p—](paj)(9))
g — — D
- Doltnll -So bl (Bo40)
) g B o) <“"“e'”°v i, [P0 ,,(1)>
= imuﬂpu»

1 np;(0)
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Pearson's Chi-Squared Test with unknown parameters

@ Hence, by the following Lamma,

k N
(0; — np;(6))?

—2log Ay, — E ~ =o0p(1).

o j=1 np;(6) p(1)

pr.

Lemma: If A, = B, (1+ 0p(1)) and A, = Op(1), then A, — B, — 0.

Proof. Note that A, — By = (Bn — An + An)op(1) = (Bn — An)op(1) + 0p(1), which implies

(An — Bn)(1 4 0p(1)) = 0p(1), and hence A, — B, = 13;21()1) = op(1).

@ By Slutsky’s Theorem,

s (0))2
Therefore, —21log A, and Z?:l % have the same limiting distribution.
j
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Pearson's Chi-Squared Test with unknown parameters

Application

Assume that there are r rows and s columns in the contingency table, and the total number in
the table is n. Let O;; be the observed frequency for the it" row and j™ column, and pij be the
probability that an observation falls into the it" row and jt column. Define p;. = Z;f:l pi; and

p.j = 2 i1 pij- For the hypothesis
Ho:pij =pipjfori=1,...,randj=1,...,s, versus Ha : Ho is wrong,
the test statistic is
>3 Qu—rbibal d, 1)1y,
i=1j=1 nPi-P-j Ho
where p;. =377 Oyj/n and p.; =377 Oy5/n.
Remark

rs—1—(r—1)—(s—1)=rs—1—r+1l—-s+l=rs—r—s+1=(r—-1)(s—1).
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L Akaike's information criterion (AIC)

Akaike's information criterion (AIC)

@ Let
9(y*) = g(y5,...,y;) denote the likelihood function of y* (true pdf of y*)
and
fo(y™*) is a family of approximation models indexed by 0 (a family of pdfs indexed by 6).
@ The "distance” between g(y*) and fg(y*) is measured by Kullback-Leibler distance

fo(y*)
a(y*)

KL(g,g) =0 and KL(fg,g) > 0, since —logt is a convex function, leading to
E(—logX) > —log E(X)

KL(fo,9) = — I, (log ) — By (log fo(y")) + Ey(log a(y")). (18)

by Jensen's inequality.
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Akaike's information criterion (AIC)

@ More specifically, letting

*
v Joly )’
9(y*)
we have by Jensen's inequality and the convexity of — logt,

£y (~tos J;B((yf))) 2 ~log By (?(%) ’

ry (200) = [P oy ey = [ potwyaw =1

because fg(y*) is a pdf and hence integrates to "1".

@ Moreover,
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Akaike's information criterion (AIC)

Note that Jensen's inequality says that for any convex function h(-), and rnadom variable X,
E(h(X)) > h(E(X)),

whenever the expectations exist. For example,

E(X?) > (EX)?
—FE(logX) > -—logEX,
E(eX) > 8E<X)7

N
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Akaike's information criterion (AIC)

@ In the derivation of AIC, y* is regarded as the "future”, whereas y, an independent copy of
y* (namely y and y* are independent, but have the same distribution.), denotes the
observations at hand.

@ Since the factor E4(log g(y*)) in (18) will be cancelled out when comparing across
different approximation models (families), the goal here is to construct an asymptotically
unbiased estimate of

—E4(log fé(y)(y*)), (g: true model; O(y): present; y*: future)
in which é(y) is the MLE of 0 using observations y.
@ A natural estimate of —Eg(log fé<y)(y*)) is given by
—log fé(y)(y), (g — unknown — dropped here; y* is replaced by vy)

the log likelihood function of y based on fg(-).

@ However, a "bias correction” term is needed to achieve asymptotic unbiasedness.
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Akaike's information criterion (AIC)

To find the bias correction term, note first that by Taylor's theorem,

Eq(10g o) (") = Eqllog fo, (y"))
(Blogi;ego(y*)) (é@)—%)}

~ 2 o * * ~
+580 |0w) — 00 (20 ) 6w - 00| (9)

where 8y = argmin KL(fg, g) and ||0* — 6| < ||6(y) — 60|
6c®

e Q
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Akaike's information criterion (AIC)

Assume fg, = g (the true model is included among the approximation family). (19) becomes

Eg(log f@(y) (¥)
= Gonsn )+ i, [(2E0Y (60 o,
~ 2 1o «(y*) -
5500, |000) 00 I 6y 6|
, 0% log fo, (y*)

& By, (08 fou ™) + 3 Brg, |(0(0) — 00) 0w -00)] @)

90;00;

because 8* <~ 6 and

Ej,

fo,

(ZeEfel)) (o) - o@]

810g f90 (y*) ! A * .
Ef9o 28 E(6(y) — 60) (y* and y are independent)

o (5, (PRS0 o)
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Akaike's information criterion (AIC)

@ Moreover, assume

1 %1 *
lim 7Ef90 (_%&(y)) = I(0p) exist. (y* can also be replaced by vy)

@ Then, we have shown (heuristically) that

Vi(b(y) — 60) L N(0,171 (o)),
and

21 * -
_18%log fo, (¥") pr., 1(60),
n 96;96;

leading to

9% log fo, (y")
00,00,
assuming 0 is a p-dimensional vector.

@ As a result, (20) becomes
Efeo (log fé(y)(y*))

X By, (l0g foy (7)) -

—(6(y) — 60) 6(y) — 00) L X3(p),

p
2
= Efeo (log fo, (y)) — g (this replacement won't change anything) (21)
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Akaike's information criterion (AIC)

@ By Taylor's expansion again,

log fo,(y) = Ingg(y)(y)-‘r(

2 5 N
50— 00) (58 ) 61y) — o).

where (|6 — 8] < [16(y) — 6o|l-

@ Since
o1 4
Ogi;ge(y)(y) — 0 (why?)
and
R 021 5 R
~(0(y) 00y T2 I0W) ) gy
100
,0%log fo, (y)

 —(B) — 00 5 EE 6(w) — 60) S X0,

it follows that

(22)

E o, (108 fo, (u)) ~ Efq, (108 fo(,) (1) — &
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Akaike's information criterion (AIC)

@ Combining (21) and (22) yields
_Efgo (log fé(y)(y*)) ~ Efgo (= log fé(y) (y) +p). (23)
This is what we call ”asymptotic unbiasedness”. (p: This is our bias correction term!!)

@ Now, the definition of AIC is given by
—2log fé(y> + 2p,

which is the quantity inside the expectation on the RHS of (23) multiplied by "2".
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More on information criteria

More on information criteria

Let

fe(y7w17"’

where 8 = (3,02

B=(X'X)"'X"y, 6=

yielding

log fg(-)

(=% log(2m) — 5 this part

,&n)

:(27r0'2)_%e { %Z (24)

—zB)Q}

). Then, the MLE of 6 is 8 = (3',62)’, where

1 i
- z:(yZ —x}3)?, and X = s
L) 2
n
n " R
=~ (log(2m) +log & x;3)*

73 log(27) — o glog&Q.

2

is independent of the model)
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More on information criteria

@ Therefore, the essential part of AlIC is
nlog &2 + 2dim(3), (25)

noting that the number of parameters in model (24) is dim(3) + 1 in which "1” will be
cancelled out when model comparisons are performed.

@ In most practical situations, the distribution of error in model (24) is unknown. Therefore,
AIC is in general not obtainable. But we can still "borrow” the AIC obtained in the
Gaussian case, namely (25), to do model selection.
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L Bayesian information criterion (BIC)

Bayesian information criterion (BIC)

@ Bayesian information criterion (BIC):

—2log f4(y) + logn fi(estimated parameters)

e logn: in contrast to "2" for AIC
o f(estimated parameters): the number of meaning estimated parameters

@ BIC in linear regression model with Gaussian error:

nlogé? + logndim(B).
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More on information criteria

L Bayesian information criterion (BIC)

Consistency of BIC in regression models

@ Consider a linear model

yr =i+ €, € He (0,0%)

where ¢+ = (z¢1,...,71x)" and B = (B1,...,BKk)’ in which some of 3; may equal 0.
@ Define Jo Z{ﬁl 01 SZSK,ﬂZ 750} and
BIC(J) = nlog 65 + logn x §(J),

where J is a subset of K = {1,..., K}, #(J) is the number of elements in .J,
1 n
7 = 5 L = alBU)

is the residual mean squared error of model J, with ®¢(J) = (24, € J) and

-1 5

B(T) = <Z @ (J) sctu)) > @i ()
t—1
denoting the LSE of model J.
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More on information criteria

L Bayesian information criterion (BIC)

@ Define
J = argmin BIC(J),
JC2Kk
where 2K denotes all subsets of K.
@ In the following, | shall show that
lim P(J=Jo)=1, (Jo: true model) (26)

n— o0

"without” assuming that ¢; are Gaussian.
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More on information criteria

L Bayesian information criterion (BIC)

@ If we can show that for Jo — J = 0 and #(J) > #(Jo) (J FA&eL e Jo),

P(BIC(J) < BIC(Jo)) ——>0, (27)
and for Jo — J # 0 (J ReLs Jy),
P(BIC(J) < BIC(Jo)) —— 0, (28)

then combining (27) and (28) leads to the desired conclusion (26).
@ To show (27), note first that
{BIC(J) < BIC(Jo)} = {n(log 67 —log&7) > logn(#(J) — §(Jo))} (29)
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More on information criteria

L Bayesian information criterion (BIC)

Moreover, since

5’2 _ 6'2
~ ~ J J . no . ~
n(logs3, ~logo3) =n <log (1 ) ) e 565 -6

1
= 7€I(MJ —M(]O)e
1 /
< —€ M je,
o
and since
1
—QE(G'MJe) =#(J) < oo,
o
we have
n(log 6'30 —logd2) = Op(1). (why?) (30)

@ < holds due to " correctness” of those two models (&30 P, 52 and 62 2, 52) and by
Taylor's expansion.

@ M and M, are orthogonal projection matrices for the column spaces of
x (J) ’ (Jo)
Xy = : and Xj, =
x5, (J) z7, (Jo)
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More on information criteria

L Bayesian information criterion (BIC)

@ Now, (27) follows directly from (29), (30) and logn — oo.
@ To show (28), define
T =JUJy, and J_ = Jo—J,
noting that J* = JUJ_ and JNJ_ = 0.

J Jo
@ In view of (27), (28) is guaranteed by
P(BIC(J) < BIC(J*)) —— 0. (31)

@ It is clear that
{BIC(J) < BIC(J")} = {n(log 57 — log &3.) < logn(4(J") — £(J)}, 32)
and logé'_%* E'—>log02.
(Since J* is a correct model, namely, a model including Jo as a subset model)
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More on information criteria

L Bayesian information criterion (BIC)

In addition, we have
y=XsB +€ (why?)
where B+ = (85,7 € J*), and hence
R 1
&5 = ~y'(I-Mj)y
1
= ;?/(I — M) (I - M) (X;B;+X;_Bs_+e)
1
= ;y/(I* M) (I — M) (X, By +e€)
1
= ;(XJ,ﬁJ, +e)'(I-M;)(X;_Bi_ +e)
! 1 ! 1 ’ 1 ! 2 / !
= ﬂJ7 ZXJf(I—MJ)XJ_ ﬁ]_+;€E_;6MJE+;ﬁJ7XJ7(I_MJ)€

= (D) + (II) + (1) + (IV). (33)
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More on information criteria

L Bayesian information criterion (BIC)

Define B = (X, X ;)~'X/X;_. Then

X/, (I—Mj;)X; _ (I: thisis the identity matrix of dimension #(J_))

= aee () o xn ()

- I
_ o i " R
= (I,-B)X}.X; (—B)’

and hence
)\min(X‘lji (Iﬁ MJ)XJ,) 2 Amin(Xg*XJ* min ( ( B))
- Amirl(X‘/]*XJ*))‘mm(I + B B)
> Amin (X7« X g#).
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More on information criteria

L Bayesian information criterion (BIC)

Assume

1

~—X'X —— R with A\pin(R) > 0. (34)

n n—oo
Then,

X, (I-MjpX, X', X
J_ — * J*
)\min n Z )\min (JT)

this is obvious X'X
Z Arﬂin n

by assumption

)\min(R) > 0. (35)
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More on information criteria

L Bayesian information criterion (BIC)

@ Therefore,
1
M by (34) V() > 18 |I2 lim Amin (,Xf] (I — MJ)XL) >0, (36)
n—oo n -

where

V() =8 (nlimm X (1~ MJ)XL) By

o |IBs_ HZ > 0 because B;_ contains non-zero coefficients
by (35, limyso0 Auin (1 X5_(I = Ms)Xy_) >0

@ Moreover, it is easy to see that

1
~€’e — o2 in probability, (37)
n
1
—€'Mje — 0 in probability, (38)
n

and

0. (39)

402 X'X\ by (34
BOV)? < 22185 [PAma (—) by (39,
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More on information criteria

Bayesian information criterion (BIC)

@ Now, it follows from (33) and (36)—(39) that
log 62 25 Jog (0 4+ V(J2)),

which, together with the second equation of (32), yields

log 6% — log 6. 2 Jog(o? + V(J-)) —loga? > 0.

@ Equation (40) and the first equation of (32) imply

P(BIC(J) < BIC(J"))
logn

= P (1oge3 — 1053 < LG~ )

n

which is (28). Thus, the proof is complete.

(40)

logn
< ogn _, 0)
n
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L A Newton-Raphson method and its asymptotics

A Newton-Raphson method and its asymptotics

@ Define

_\\ -1 _
,,A]New — ﬁ _ (62‘6(7’)) ‘%("7)
;i on; om '
where £(n) is the log-likelihood function and 7} is an initial estimate of the true parameter
Mo -
@ In the following, I'll show that if

. _1
17— 7o || = op(n™3), (41)
then

Va@aNe —ny) & N©0,17(n,)),

where I(n,) is the Fisher information matrix.
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L A Newton-Raphson method and its asymptotics

hew _ g (awﬁ) ) - (w(ﬁ) B aano)) - (M(ﬁ) ) ~ ot(ny)

;O on on ;O on

By Taylor's theorem,

Y1
ol oL(n 9%4(7 . .
(o) _  otm) (n)( sl o, (42)
on on OniOn; :
Tp
where
I 93U(my) _ _
=3 Z: 2:21 m(no,i - 771)(770,1' —75)
with
N Mo,1
: :ﬁ> ="M and ||77—770||2||TIZ—770||»’€:17~-7P4
ﬁp Mo, p

(assuming there are p parameters)
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A Newton-Raphson method and its asymptotics

@ Assume Condition (ii) in the proof of the consistency of the MLE holds, and there exists
6 > 0 such that

1 03
su 1 _o%m) = 0p(1).
neEBs (ny) T M INiOn;
@ Then, by (41) and (42), one gets

824(m) ) ~1 au(ny)

~New ~ = —1
N =n—(n-mn)+op(n 2)—(
o an;n; on

and hence

1.020(n) ) 11 0u(ny) (43)

n(ANeY — =o0 — — 0
Vi = ng) = o) - (G5l ) 2
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L A Newton-Raphson method and its asymptotics

By (41) and an argument similar to that used to prove (42), the RHS of (43) becomes

-1
n dn;on; Vi on e
and hence the desired conclusion follows from
1 0¢(ny) 4
————— = N(0,I
Tr o T NOI(m,))
and
1 3%(%) pr.
—— 1 .
n 8772'87]]' (770)

Question

Please show that if (41) is replaced by

1

1% —moll = Op(n™ 9)
for some q > 4, then

~New =0 *%
K7 Moll = Op(n 7).
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L A Newton-Raphson method and its asymptotics

Example

@ Assume
yi=x;Bo+ai, i=1,...,n,
iid . . .
where a; = 0;¢;, ¢ —~— N(0,1), 02 = exp{ziag}, and z; is a (p + 1)-dimensional
explanatory vector with 1 as its first component (namely the intercept term is included).

@ Assume also 1 < ||@;|| < M for some 1 < M < oo and

1 i
~X'X - R (pd.), where X = |
n :
z,
Then, it is not difficult to see that the LSE of 3o,
Y1
B=(X'X)"'X'y, where y=| : |,
Yn
satisfies
- _1
B—Bo=0p(n"2). (44)
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A Newton-Raphson method and its asymptotics

@ In the following, I'll construct an initial estimate of
U+ a0,0
’ 0,0
0,1 ’
0y = . , where : =ap and u = E(log 612)
o,
ao,p P
@ Define

and

~ aiv if |a’7,‘ > n7§7
a; =
v n=&, if |a;] <n¢,

where 0 < £ < % —01. Let A,, = {||B —Boll < n7%+91}, 01 > 0 is a small positive
number.

@ By (44), it holds that
lim P(A,) = 1. (45)

n—o0o
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A Newton-Raphson method and its asymptotics

@ Let
logd%
0=(X'X)"'X'z, where z =
log.d%
@ Since
loga? = ®.00 + (log a2 — log a?) + (log €2 — u),
we obtain

5 1 1 &
6-06, = <5XIX) mei(loge?—u)
i=1

1 R 52 2
+ (;X/X) ;;wi(logai —logai)l,,|<n—o

1 R

+<7Xlx) mei(log[z?—logaf)llaibn_g
n nia

= (1)+ () + (1),

where§<0<%—91.
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A Newton-Raphson method and its asymptotics

@ [t is easy to see that

_1
(1) = Op(n~2). (46)
i1
@ Denote x; by . . Then, we have for 1 <j <p+1,
Li,p+1
1 n
E {n 2; |:c,-]-(10g&12 — loga?)‘ Iai<n_91An}
im
why? 2 20 102 20
< ClognP(ai <n )+ CPz2(a;j <n =) (C: some positive constant)
why? 9
< C*n"2. (C*: some positive constant)

This, the positive definiteness of R, and (45) yield

(IT) = Op(n™2). (47)
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aphson method and its asymptotics

Moreover,

E

& R
; ZI’LJ (log a‘z? — log azz)1|ai‘>n*91An
i=1

(C : some positive constant)

- C < |28 = Bo)|
< E‘ >l — laj)>n-014,
nia @i

why? o—1ip
< ¢*nf72t%1 (C* : some positive constant)

This, the positive definiteness of R, and (45) imply
(ITT) = Op(n~3F01+0),
which, together with (46) and (47), gives
6 — 00 = 0p(n~9) (48)

with ¢ = min{% — 601 — 0, g}
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phson method and its asymptotics

@ Recall that the location-dispersion model is

1
Yi :a:é,@—l—exp{gm;a}ei, i=1,...,n,

with €; Hd, N(0,1) and the log-likelihood function is
w IS / IR 1 3\2, —xha
2B, a) = -5 log (27) — 3 D @ — o> (i —wB) e

=1 2 =1

@ The function —4(3, ) is not jointly convex in coefficients (3, a). This also reveals the
importance of finding a good initial estimate of the true parameters.
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A Newton-Raphson method and its asymptotics

Function
n n
ij

f(B,0) = Z . +Z exp{awg}

«@
= j=1
Setting

o ¢ »L N(0,1)

o & ~L N, 1)
e f=1landa=2

e n=10
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3D plot and contour plot
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A Newton-Raphson method and its asymptotics

Define

(3

~ 1
ag = log — _
n ; e®i101+ - +zipbp ’

where
fo

a. Please show that &g — ap,0 = Op(n_‘s) for some 6 > 0.

b. Can you obtain similar results when ¢;'s are non-Gaussian?
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L Asymptotics for the MLEs of Weibull distribution parameters

Asymptotics for the MLEs of Weibull distribution
parameters

@ Weibull distribution

where z > 0, A\g > 0 is called the scale parameter, and «g > O is called the shape
parameter.

@ The density function (49) can be rewritted as
ag
f(z) = @x"‘ofl exp{fx—}, x> 0,a0 > 0,1, >0,
o o

in which 7, = Ag°.
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Asymptotics for the MLEs of Weibull distribution parameters

Define the average log-likelihood function
1 a 1 & 11 ¢
—l(a,m) =log — + (a — 1)— E logz; — —— g z$.
n n ni nni4

Then

~{t(ao,1,) — )}

« « 1<
= log o log — + (g — ) — Z(Iogwi — E(logz;))
"o n )
1 230 — B0
+(ao — a)E(log z;) — — Z L L
i "o
1 N2 — Bz Ex®  Ex
+ - P . ppumiat. S . (50)
n Z n n Mo
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Asymptotics for the MLEs of Weibull distribution parameters

@ Note that
20
1 oo &0 a P
E(logz;) = — ( L )—OLB?O le” 0 day
ap Jo Mo "o
1

() 7u 1
= — logue™ " du+ — logn,
ao Jo g

1
= —(=v+logn,),
ap

n

where v = limp, 00 (logn — Y27 ; 1) £ 0.5772. (: Euler-Mascheroni constant)

@ In addition, it holds that for m > —ag,
m
B(a) = g r(—+1),
ap
and by the Weierstrass product for the I' function,

MeEt+1) 1_ 1
) ; z>0. (51)
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Asymptotics for the MLEs of Weibull distribution parameters

@ (51) implies
r 1) T nr 1) — @ 1))2 1
GPEED TEHDTEED D g 1
dz  T'(2) I'2(z) = (i+2)
and hence
" / 2
F(z+1)> I'"(z+1) z>0. (52)
I'(2) I'(2)
@ Now, for (o, n) € [81, M1] X [02, M2], where 0 < 1,2 < oo are small constants and
0 < My, Ms < oo are large constants,
1
{0, mo) — Ly m)}
1 & 1A [0
= (wp—a)— Z{logxi — E(logxy)} — — Z - -1
n = n =\ n
1~ [ Ex?
72{ — }+g(ao,no)—g(a,n)
n = n
= (D) + 10 + (TI) + (IV), (53)

where (IV) = g(a0,7,) — g(a, ) and
0y 0 T( +1)

«a
g(a,m) = log n + aE(logz;) — p
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Asymptotics for the MLEs of Weibull distribution parameters

In the following, | shall show that

(i) (@o,m,) is the only critical point satisfying

9g(am) _ o g B9lam) _
Ja on ’

(ii) there exist small positive constants s1 and sz such that
g(ao,my) — gle,m) > sallv — wvol|?
for all v = (a,n)" € Bs, (vo), where vg = (a0, n,)’,

(iii) (a0, 7, ) is the unique maximizer of g(c, 7).
To show (i), note that

0 a0
M=0 — nznogF(g+1)
on ag

and

d ey «a why?
— Moo — +1 =0 <
et (o r (5 1)) 0 22 2

)

1 1 ) 1
oo == (54)
i>1<1/ 1/+C¥£0 Ctgo
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Asymptotics for the MLEs of Weibull distribution parameters

@ Since the RHS (LHS) of (54) is decreasing (increasing) in

aio, and (% = 1 is a solution of
the equation, the desired conclusion (i) follows (why?).

@ To show (ii), note first that by (i) and Taylor's theorem, one has for ||v — vo|| < & with §
being arbitrarily small,

?g(e* ™) 0%g(a*,n*)

_ 1 ’ da? dadn a — Qo
glayn) = glao, ) = S(@=a0,n=10)" | 52500 n*)  02g(a"m*) n—mn, )’ (55)
Onda on?
where

0T (& +1)

RTIR (C] E (V| B
n n n — "o ="

g(a,m) =
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Asymptotics for the MLEs of Weibull distribution parameters

It is straightforward to see that

2 o [r1 2 21 (& +1) 1
0 g(c;,n) _ <0gno> r(ﬁ+1)+ Og27701—\/ (g+1) oo + 2
Oa n ap Qg g o ag «
a5 o
9%g(a,m) _mg® (2T (& +1) 1
on? n n? n?’

?gla,m)  ny°

1
dadn {77{1ogn0r(ﬁ+1)+r’ (KH)”'
aon n agn @ aQ
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Asymptotics for the MLEs of Weibull distribution parameters

Since ||v — vo|| < & with § being arbitrarily small, there exists an arbitrarily small 65 > 0 such
that for all ||v — vg|| <4,

S for (& 41) 1
Jo__ a+ —72(1_06)
n m n n n

s
Mo ° F(O‘O—i_l)
2 b

which, together with (52), yields

%g(aym)  9%g(a,m)

2 dad
det da n
%g(e,m)  8%g(en)
Onda on?

2

a0 1 \?2
> T (—) {(1 —~05) {(bgno)?F2 (3 - 1)
n aon ao
+2logn, T’ (ﬁ + 1) r (ﬁ + 1) +1” (ﬁ + 1) r (ﬁ + 1)}
o ag aQ @0

[ ) e (o) ) - () )

for some small ¢ > 0 depending only on § and 6;.
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Asymptotics for the MLEs of Weibull distribution parameters

@ Therefore,

%g(am)  d%g(am)

hy?

. . da2 dadn WIYT

Inf Amin | 929(am)  0%g(am) | T € (56)
vEBs (vo) Do o2

for some c* > 0.

@ By (55) and (56), it holds that for |[v — vgl| < 4,

g9(@0,7m,) — g(e,m) =
and hence (ii) follows.

@ Now, (iii) follows directly from (i), (ii) and the differentiability of g(«, 8).
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@ In view of (i)—(iii) and (53), the consistency of
1
(d7 ’f]) = argmax 7€(Oé, 77)
(a,;m)€[d1,M71]x[62,M2] T

is ensured by

sup (D] = op(1), [AD)| = 0p(1), (57)
a€[d1,M1]

sup |(1ID)] = op(1). (58)
(o,n)€[81,M1] X [§2,M2]
@ (57) is an immediate consequence of the (classical) law of large numbers, whereas (58)

relies on the so-called uniform law of large numbers.

@ In the following, I'll provide a proof of (58).
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@ Note first that (58) is guaranteed by (why?)

1 n
LSt - mr
ni:l

sup
a€[d1,M1]

@ Define g¢(a) = z¢ — E(x§). Then,

which implies

n 2
1

E  sup = (@) = gt(ao)
g[8y, M) (" Z

why?

M n
< an-med [ <i2g£<x>> da
1 t=1

2
1 n
< (Mi—61)* sup E[=> gi(e)
why? a€ldy,Mq] n t=1
My —61)?
< (M = 61)” sup  Var(z{logzi) = O(n™1),
why? n a€s1,M1]
hy? 1
sup th ) — gt ( OCO)W—y Op(n™2).
a€glsy,M1] T

(59)

(60)
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@ Moreover, it is easy to see that
1< _1
= gi(a0) = Op(n™2). (61)
L)

@ Combining (60) and (61) gives (59). Thus, the proof is complete.

Please find the limiting distribution of (&, 7).
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