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Maximum Likelihood Estimates: Asymptotic Properties

Consistency of MLEs

Consistency of MLEs

Let L(θ) be a likelihood function and θ0 ∈ Θ denote the true parameter. If

(i) θ0 is an interior point of Θ,

(ii) There exists a sufficiently small number a > 0 and a nonrandom matrix G(θ) such that for
any θ ∈ Ba(θ0) = {θ : ‖θ − θ0‖ ≤ a},

sup
θ∈Ba(θ0)

∥∥∥∥− 1

n

∂2`(θ)

∂θi∂θj
−G(θ)

∥∥∥∥→ 0 in probability,

inf
θ∈Ba(θ0)

λmin(G(θ)) > 0,

where `(θ) = logL(θ),

(iii) ∂
∂θ
`(θ0) = Op(

√
n),

Norm

For a vector v, ‖v‖ denotes the Euclidean norm of v.

For a matrix V , ‖V ‖ denotes the spectral norm of V .
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Maximum Likelihood Estimates: Asymptotic Properties

Consistency of MLEs

then the likelihood equation

∂`(θ)

∂θ
= 0 (1)

has a root θ̃n satisfying

θ̃n → θ0 in probability. (2)

Moreover, if

(iv) P
(
`(θ0) > supθ∈Bca(θ0) `(θ)

)
→ 1,

then

θ̂n = argmax
θ∈Θ

L(θ)→ θ0 in probability. (3)
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Maximum Likelihood Estimates: Asymptotic Properties

Consistency of MLEs

Proof

Let θ̃n be the solution of (1) closest to θ0. We will first show that for any 0 < ε ≤ a (note
that a is defined in (ii)),

P

(
sup

θ∈B∗ε (θ0)
`(θ) < `(θ0)

)
→ 1 as n→∞, (4)

where B∗ε (θ0) = Ba(θ0)−Bε(θ0).

Relation (4) implies

P
(
θ̃n ∈ Bε(θ0)

)
= P (there exists a solution of (1) lying in Bε(θ0))→ 1 as n→∞,

and hence the desired conclusion (2) follows.

Define

En(δ) =

{
inf

θ∈Ba(θ0)
λmin

(
−

1

n

∂2`(θ)

∂θi∂θj

)
< δ

}
,

where δ > 0 is arbitrarily small.

5 / 82



Maximum Likelihood Estimates: Asymptotic Properties

Consistency of MLEs

Then, on the set Ecn(δ) (the complement of En(δ)), one has by Taylor’s theorem,

sup
θ∈B∗ε (θ0)

`(θ)− `(θ0)

why?
≤ sup

θ∈B∗ε (θ0)

∥∥∥∥∂`(θ0)

∂θ

∥∥∥∥ ‖θ − θ0‖

− inf
θ∈B∗ε (θ0)

1

2
(θ − θ0)′

(
−
∂2`(θ∗)

∂θi∂θj

)
(θ − θ0) (‖θ∗ − θ0‖ ≤ ‖θ − θ0‖)

≤
∥∥∥∥∂`(θ0)

∂θ

∥∥∥∥ a− ε2

2
inf

θ∈Ba(θ0)
λmin

(
−
∂2`(θ)

∂θi∂θj

)
≤

∥∥∥∥∂`(θ0)

∂θ

∥∥∥∥ a− nε2

2
δ.

This and condition (iii) yield

P

(
sup

θ∈B∗ε (θ0)
`(θ)− `(θ0) ≥ 0, Ecn(δ)

)
≤ P

(∥∥∥∥∂`(θ0)

∂θ

∥∥∥∥ a ≥ ε2

2
nδ

)
→ 0 as n→∞. (5)
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Maximum Likelihood Estimates: Asymptotic Properties

Consistency of MLEs

In view of (5), (4) follows if we can show that for any ε1 > 0, there exists a sufficiently
large N and sufficiently small δ > 0 such that for all n ≥ N ,

P (En(δ)) < ε1 . (6)

To show (6), denote − 1
n
∂2`(θ)
∂θi∂θj

by An(θ). Then,

λmin(An(θ)) ≥ λmin(An(θ)−G(θ)) + λmin(G(θ))

≥ λmin(G(θ))− ‖An(θ)−G(θ)‖,

yielding

inf
θ∈Ba(θ0)

λmin(An(θ)) ≥ inf
θ∈Ba(θ0)

λmin(G(θ))− sup
θ∈Ba(θ0)

‖An(θ)−G(θ)‖.

This and condition (ii) give (6). Thus, (2) is proved.

Finally, it follows from (4) and (iv) that

P

(
sup

θ∈Bcε (θ0)
`(θ) < `(θ0)

)
→ 1 as n→∞,

which implies θ̂n converges θ0 in probability.
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Maximum Likelihood Estimates: Asymptotic Properties

Logistic regression model

Logistic Regression Model

Recall logistic regression. For i = 1, . . . , n, assume

P (Yi = 1) = 1− P (Yi = 0) =
ex
′
iβ0

1 + ex
′
i
β0
≡ pi,0,

(
log

(
pi,0

1− pi,0

)
= x
′
iβ0

)
where xi is the explanatory vector and β0 is an unknown regression coefficient vector.
Therefore, the likelihood function is (assuming Yi are independent)

L(β) = P (Y1 = y1, . . . , Yn = yn) =

n∏
i=1

p
yi
i (1− pi)1−yi ,

where pi = ex
′
iβ/(1 + ex

′
iβ) and β ∈ B, the parameter space, and the log-likelihood function is

`(β) = logL(β) =

n∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

=

n∑
i=1

yi log

(
pi

1− pi

)
+

n∑
i=1

log(1− pi) =

n∑
i=1

yix
′
iβ −

n∑
i=1

log(1 + e
x′iβ).

Moreover,
∂`(β)
∂β =

∑n
i=1 xiyi−

∑n
i=1

e
x′iβ

1+e
x′
i
β
xi =

∑n
i=1 xi

(
yi − e

x′iβ

1+e
x′
i
β

)
=

if β=β0

∑n
i=1 xi(yi−pi,0).

Note that yi = E(yi) + (yi − E(yi)) = pi,0 + εi where εi ∼ (0, pi,0(1− pi,0)).
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Logistic regression model

Define β̂ = argmaxβ∈B`(β). Does β̂ converges to β0 in probability?

(0) β0 is an interior point of B, ← This can be assumed.

(1) 1√
n

∂`(β0)
∂β

= Op(1),

1√
n

∂`(β0)
∂β

= 1√
n

∑n
i=1 xiεi in linear regression model.

(2) P (infβ∈Ba(β0) λmin(− 1
n
∂2`(β)
∂βi∂βj

) > δ)→ 1, where δ and a are small constants and

Ba(β0) = {β : ‖β − β0‖ ≤ a},
− 1
n
∂2`(β)
∂βi∂βj

= 1
n
X′X in linear regression model.

(3) P (`(β0) > supβ∈Bca(β0) `(β))→ 1.

In linear regression model,

−
1

2σ2

n∑
i=1

ε2i = −
1

2σ2

n∑
i=1

(yi − x′iβ0)2 > −
1

2σ2

n∑
i=1

(yi − x′iβ)2, β ∈ Bca(β0),

because

−
1

2σ2

n∑
i=1

(yi − x′iβ)2 = −
1

2σ2

n∑
i=1

(yi − x′iβ0 + x′i(β0 − β))2

= −
1

2σ2

n∑
i=1

(εi + x′i(β0 − β))2

·∼ −
1

2σ2

{
n∑
i=1

ε2i + (β0 − β)′

(
n∑
i=1

xix
′
i

)
(β0 − β)

}
.
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Logistic regression model

Remark

For (1), does 1√
n

∂`(β0)
∂β = 1√

n

∑n
i=1 xi(yi − pi,0) = Op(1)? Note that

1

n
E

(
∂`(β0)

∂β

(
∂`(β0)

∂β

)′)
=

1

n

n∑
i=1

xix
′
iVar(yi) =

1

n

n∑
i=1

xix
′
ipi,0(1− pi,0)

=
1

n
X
′
D0X

≤ λmax

(
1

n
X
′
X

)
λmax(D0)

≤ λmax

(
1

n
X
′
X

)
min

1≤i≤n
pi,0(1− pi,0)

≤
1

4
λmax

(
1

n
X
′
X

)
.

where D0 = diag(p1,0(1− p1,0), . . . , pn,0(1− pn,0)). If λmax( 1
nX
′X) is bounded, then (1) holds.

For (2), since − 1
n
∂2`(β)
∂βi∂βj

.∼ 1
nX
′DX where D = diag(p1(1− p1), . . . , pn(1− pn)), we have

inf
β∈Ba(β0)

λmin

(
1

n
X
′
DX

)
≥ λmin

(
1

n
X
′
X

)
inf

β∈Ba(β0)
min

1≤i≤n
pi(1− pi).

Therefore, (2) holds if λmin( 1
nX
′X) > c1 > 0 and infβ∈B min1≤i≤n pi(1− pi) > c2 > 0 for all

large n, where c1 and c2 are some positive constants.
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Logistic regression model

Remark (cont.)

For (3), it can be shown through (0)–(2) that

P

(
`(β0) > sup

β∈(Ba(β0)−Bε(β0))

`(β)

)
→ 1,

for any ε > 0. Moreover, since

∂`2(β)

∂βi∂βj

·∼ −X′DX,

which is negative definite (assuming X′X is p.d. and min1≤i≤n pi(1− pi) is bounded away from 0
in B) and hence `(β) is a convex function, (3) follows.
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A central limit theorem for MLEs

A central limit theorem for MLEs

Define

η̂ = argmin
η∈Λ

`(η),

where `(η) is the log-likelihood function and the true parameter η0 is an interior point of
the parameter space Λ.

I have shown in my previous note that

η̂
pr.−−→ η0 .

In the following, I will present a CLT for η̂ using a way far from being rigorous.
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A central limit theorem for MLEs

Note that

0 =
∂`(η̂)

∂η
=
∂`(η0 )

∂η
+
∂2`(η∗)

∂ηi∂ηj
(η̂ − η0 ), (7)

where ‖η∗ − η0‖ ≤ ‖η̂ − η0‖.
Since it can be shown that η∗ → η0 in probability (because η̂ → η0 in probability), we
have by (7) and some tedious arguments (which we skip in this note),

√
n(η̂ − η0 )−

[
−
(

1

n

∂2`(η0 )

∂ηi∂ηj

)−1 (
1
√
n

∂`(η0 )

∂η

)]
pr.−−→ 0. (8)

(η∗ in (7) has been replaced here.)
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A central limit theorem for MLEs

Assume

E

(
−

1

n

∂2`(η0 )

∂ηi∂ηj

)
= E

[
1

n

(
∂`(η0 )

∂η

)(
∂`(η0 )

∂η

)′]
−→
n→∞

I(η0 ),

and

1

n

∂2`(η0 )

∂ηi∂ηj
− E

(
1

n

∂2`(η0 )

∂ηi∂ηj

)
pr.−−→ 0. (zero matrix)

Then

1

n

∂2`(η0 )

∂ηi∂ηj

pr.−−→ −I(η0 ),

and hence

−
(

1

n

∂2`(η0 )

∂ηi∂ηj

)−1
pr.−−→ I−1(η0 ). (9)
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A central limit theorem for MLEs

Under certain regularity conditions, it can be shown that

1
√
n

∂`(η0 )

∂η

d−→ N(0, I(η0 )). (10)

By (8)–(10) and Slutsky’s Theorem,

√
n(η̂ − η0 )

d−→ N(0, I−1(η0 )). (11)
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A central limit theorem for MLEs

Example

Example I

Consider logistic regression model. Does
√
n(β̂ − β0)

d−→ N(0,A), for some A?

By ∂`(β̂)
∂β

·∼ ∂`(β0)
∂β

+
∂2`(β0)
∂βi∂βj

(β̂ − β0), we have

√
n(β̂ − β0)

·∼
(
−

1

n

∂2`(β0)

∂βi∂βj

)−1
1
√
n

∂`(β0)

∂β
.

Assume 1
n
∂2`(β0)
∂βi∂βj

− E
(

1
n
∂2`(β0)
∂βi∂βj

)
pr.−−→ 0 and

E

(
−

1

n

∂2`(β0)

∂βi∂βj

)
= E

(
1

n

∂`(β0)

∂β

(
∂`(β0)

∂β

)′)
−→
n→∞

G (p.d.).

Then

−
1

n

∂2`(β0)

∂βi∂βj

·∼
1

n

n∑
i=1

xix
′
ipi,0(1− pi,0) −→

n→∞
G.

Since 1√
n

∂`(β0)
∂β

= 1√
n

∑n
i=1 xiεi, it follows from Lindeberg’s CLT that

1
√
n

n∑
i=1

xiεi
d−→ N(0,G),

and hence
√
n(β̂ − β0)

d−→ N(0,G−1).
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A central limit theorem for MLEs

Example

Example II

Consider yi
independent∼ N(x′iβ0, ex

′
iα0 ), or equivalently,

yi = x′iβ0 + σi,0εi,

with σi,0 = e
1
2
x′iα0 and εi

i.i.d.∼ N(0, 1).

log-likelihood function

`(η) = `(β,α) = −
n

2
log (2π)−

1

2

n∑
i=1

x′iα−
1

2

n∑
i=1

(yi − x′iβ)2e−x
′
iα.
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A central limit theorem for MLEs

Example

To illustrate (11), we start by considering the special case where σi,0 = 1 or equivalently,
α0 = 0. Then,

yi = x′iβ0 + εi, εi
i.i.d.∼ N(0, 1).

In addition,

`(β) = −
n

2
log (2π)−

1

2

n∑
i=1

(yi − x′iβ)2,

yielding

∂`(β0)

∂β
=

n∑
i=1

xi(yi − x′iβ0) =
n∑
i=1

xiεi.

Note that we’ve shown before

1
√
n

∂`(β0)

∂β
=

1
√
n

n∑
i=1

xiεi
d−→ N(0,R),

where R = limn→∞
1
n

∑n
i=1 xix

′
i (assuming the limit exists).
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A central limit theorem for MLEs

Example

Moreover, we have

∂2`(β0)

∂βi∂βj
= −

n∑
i=1

xix
′
i,

hence

1

n

∂2`(β0)

∂βi∂βj
→ −R.

As a result, we have by (11),

√
n(β̂ − β0)

d−→ N(0,R−1),

which coincides with the result that we’ve obtained for LSE. (Noting that in this example,
we assume σ2 = 1.)
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A central limit theorem for MLEs

Example

We now get back to the general case α0 6= 0.

∂`(η0 )

∂β
=

n∑
i=1

xi

σi,0
εi,

∂`(η0 )

∂α
=

1

2

n∑
i=1

(
(yi − x′iβ0)2

σ2
i,0

− 1

)
xi,

(
(yi − x′iβ0)2

σ2
i,0

= ε2i

)
∂2`(η0 )

∂βi∂βj
= −

n∑
i=1

xix
′
i

σ2
i,0

,

∂2`(η0 )

∂αi∂αj
= −

1

2

n∑
i=1

xix
′
iε

2
i ,

∂2`(η0 )

∂αi∂βj
= −

n∑
i=1

xix
′
i

σ2
i,0

(yi − x′iβ0).
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A central limit theorem for MLEs

Example

Assume

1

n

n∑
i=1

xix
′
i

σ2
i,0

−→
n→∞

B and
1

n

n∑
i=1

xix
′
i −→n→∞ R.

Then,

−
1

n

∂2`(η0 )

∂ηi∂ηj

pr.−−→
(
B 0
0 1

2
R

)
.

Moreover, it can be shown that

1
√
n

∂`(η0 )

∂η
=

(
1√
n

∑n
i=1

xi
σi,0

εi
1

2
√
n

∑n
i=1 xi(ε

2
i − 1)

)
d−→ N

(
0,

(
B 0
0 1

2
R

))
.

Consequently,

√
n(η̂ − η0 )

d−→ N

(
0,

(
B−1 0

0 2R−1

))
.

Question

If εi
i.i.d.∼ (0, 1) (without assuming normality; E(εi) = 0 and V ar(εi) = 1),

√
n(η̂ − η0 )

d−→?
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A central limit theorem for MLEs

Example

In practice, B and R are unknown and we can use

B̂ =
1

n

n∑
i=1

xix
′
i

ex
′
iα̂

and R̂ =
1

n

n∑
i=1

xix
′
i

in place of B and R.

Moreover, it can be shown that

√
n

B̂ 1
2 0

0 1√
2
R̂

1
2

 (η̂ − η0 )
d−→ N(0, I),

which allow us to construct confidence regions for η0 .

Question

If εi
i.i.d.∼ (0, 1) (without assuming normality; E(εi) = 0 and V ar(εi) = 1), please find

a ”data-driven matrix” D̂

such that

√
nD̂(η̂ − η0 )

d−→ N(0, I).
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Asymptotics for likelihood ratio tests

Asymptotics for likelihood ratio tests

Let x1, . . . , xn be a random sample from the pdf fθ0 (·), where

θ0 =

(
θ0,K(r)

θ0,r

)
∈ Θ ⊆ RK ,

θ0 is an interior point of Θ, θ0,r and θ0,K(r), respectively, are r-dimensional and
(K − r)-dimensional vectors, and K > r.

For the hypothesis

H0 : θ0 ∈ Θ0 ⊆ Θ versus HA : θ0 /∈ Θ0,

the likelihood ratio test rejects H0 if Λn ≤ C, where

Λn =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
=

supθ∈Θ0

∏n
i=1 fθ(xi)

supθ∈Θ
∏n
i=1 fθ(xi)

,

and 0 ≤ C ≤ 1 is determined by the distribution of Λn and the level of the test.
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Asymptotics for likelihood ratio tests

In the following, I’ll show that

−2 log Λn
d−→ χ2(dim(Θ)− dim(Θ0)).

Without loss of generality, we may assume

H0 : θ0,r = θ∗0,r and HA : θ0,r 6= θ∗0,r,

and hence

Θ0 = {θ : (θ′K(r),θ
∗′
0,r) ∈ Θ},

where θK(r) is (K − r)-dimensional.

(θK(r): free parameters; Θ: non-degenerate subset in RK)
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Asymptotics for likelihood ratio tests

Assume

θ̂∗ =

(
θ̂K(r)

θ∗0,r

)
= argmax

θ∈Θ0

L(θ) and θ̂ = argmax
θ∈Θ

L(θ)

are unique. Then, under some regularity conditions mentioned in my previous note,

θ̂ =


θ̂1
...

θ̂K

 pr.−−→ θ0 ≡



θ0,1
...

θ0,K−r
θ0,K−r+1

...
θ0,K


=

(
θ0,K(r)

θ0,r

)
, θ̂

pr.−−→
H0

θ∗0 ≡
(
θ0,K(r)

θ∗0,r

)
=



θ0,1
...

θ0,K−r
θ∗0,K−r+1

...
θ∗0,K


,

and

θ̂∗ =

(
θ̂0,K(r)

θ∗0,r

)
=



θ̂K(r),1

...

θ̂K(r),K−r
θ∗0,K−r+1

...
θ∗0,K


pr.−−→
H0

θ∗0 .
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Asymptotics for likelihood ratio tests

Now, by Taylor’s theorem, we have under H0,

`(θ̂∗) = `(θ∗0) +

(
∂`(θ∗0)

∂θK(r)

)′
(θ̂K(r) − θ0,K(r))

+
1

2
(θ̂K(r) − θ0,K(r))

′
(
∂2`(θ∗0)

∂θi∂θj

)
1≤i,j≤K−r

(θ̂K(r) − θ0,K(r))

+
1

3!

∑
1≤i,j,l≤K−r

(
∂3`(θM)

∂θi∂θj∂θl

)
(θ̂K(r),i − θ0,i)(θ̂K(r),j − θ0,j)(θ̂K(r),l − θ0,l), (12)

where ‖θM − θ∗0‖ ≤ ‖θ̂∗ − θ∗0‖ and ∂`(θ)
∂θK(r)

=
(
∂`(θ)
∂θ1

, · · · , ∂`(θ)
∂θK−r

)′
, and in general

`(θ̂) = `(θ0) +

(
∂`(θ0)

∂θ

)′
(θ̂ − θ0)

+
1

2
(θ̂ − θ0)′

(
∂2`(θ0)

∂θi∂θj

)
(θ̂ − θ0)

+
1

3!

∑
1≤i,j,l≤K

(
∂3`(θO)

∂θi∂θj∂θl

)
(θ̂i − θ0,i)(θ̂j − θ0,j)(θ̂l − θ0,l), (13)

where ‖θO − θ0‖ ≤ ‖θ̂ − θ0‖.
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Asymptotics for likelihood ratio tests

By the CLT for θ̂K(r) and θ̂ and assuming there exists small δ > 0 such that

sup
θ∈Bδ(θ∗0 )

∣∣∣∣ 1n ∂3`(θ)

∂θi∂θj∂θl

∣∣∣∣ = Op(1) for 1 ≤ i, j, l ≤ K,

it can be shown that under H0, the third terms on the RHS of (12) and (13) are of order
op(1).

Therefore, it remains to show that

(I)− (II)
d−−→

H0

χ2(r), (14)

where

(I) = 2

(
∂`(θ∗0)

∂θ

)′
(θ̂ − θ∗0) + (θ̂ − θ∗0)′

(
∂2`(θ∗0)

∂θi∂θj

)
(θ̂ − θ∗0),

(II) = 2

(
∂`(θ∗0)

∂θK(r)

)′
(θ̂K(r) − θ0,K(r))

+(θ̂K(r) − θ0,K(r))
′
(
∂2`(θ∗0)

∂θi∂θj

)
1≤i,j≤K−r

(θ̂K(r) − θ0,K(r)).
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Asymptotics for likelihood ratio tests

Define

xt =
∂ log fθ∗0 (xt)

∂θ
and xt,K(r) =

∂ log fθ∗0 (xt)

∂θK(r)

.

Then, under the regularity conditions similar to those used to obtain the CLTs for θ̂ and θ̂K(r),
we have

(I) =
H0

1′X(X′X)−1X′1 + op(1),

(II) =
H0

1′XK(r)(X
′
K(r)XK(r))

−1X′K(r)1 + op(1),
(15)

where

X =

x
′
1
...
x′n

 ,XK(r) =


x′

1,K(r)

...
x′
n,K(r)

 , and 1 =

1
...
1

 .
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Asymptotics for likelihood ratio tests

Let X−1 satisfy (XK(r),X−1) = X and define

D =

(
I(K−r)×(K−r) −(X′

K(r)
XK(r))

−1X′
K(r)

X−1

0r×(K−r) Ir×r

)
.

Then

1′X(X′X)−1X′1

= 1′XD(D′X′XD)−1D′X′1

why?
= 1′XK(r)(X

′
K(r)XK(r))

−1X′K(r)1

+1′(I −MK(r))X−1(X′−1(I −MK(r))X−1)−1X′−1(I −MK(r))1, (16)

where

MK(r) = XK(r)(X
′
K(r)XK(r))

−1X′K(r)

is the orthogonal projection matrix onto C(XK(r)).
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Asymptotics for likelihood ratio tests

Since

1

n
X′X

pr.−−→
H0

I(θ∗0) =

(
I11(θ∗0) I12(θ∗0)
I21(θ∗0) I22(θ∗0)

)
(p.d.)

and

1
√
n

n∑
t=1

xt
d−−→

H0

N(0, I(θ∗0))

under some regularity conditions, it holds that

1

n
X′−1(I −MK(r))X−1

pr.−−→
H0

I22(θ∗0)− I21(θ∗0)I−1
11 (θ∗0)I12(θ∗0),

1
√
n
X′−1(I −MK(r))1

why?
= (−X′−1XK(r)(X

′
K(r)XK(r))

−1, Ir×r)
1
√
n

n∑
t=1

xt

H0= (−I21(θ∗0)I−1
11 (θ∗0), Ir×r)

1
√
n

n∑
t=1

xt + op(1),

and

1′(I −MK(r))X−1(X′−1(I −MK(r))X−1)−1X′−1(I −MK(r))1
d−−→

H0

χ2(r). (17)

Now, the desired conclusion (14) follows from (15)–(17).
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Pearson’s Chi-Squared Test with unknown parameters

Assume x1, . . . , xn is a random sample generated from f(x). Consider

Let pi = P (x1 ∈ Ai) =
∫
z∈Ai

f(z) dz, where
⋃k
i=1 Ai = R and Ai ∩Aj = ∅ if i 6= j.

Define

yi =


I{xi∈A1}

...
I{xi∈Ak−1}

 ≡
 yi,1

...
yi,k−1

 .

Then, the likelihood function of y1, . . . ,yn is

L(p1, . . . , pk−1) =

n∏
i=1

p
yi,1
1 · · · pyi,kk = p

∑n
i=1 yi,1

1 · · · p
∑n
i=1 yi,k

k ≡ pO1
1 · · · pOkk ,

where yi,k = 1−
∑k−1
j=1 yi,j and pk = 1−

∑k−1
j=1 pj .
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Pearson’s Chi-Squared Test with unknown parameters

Now Consider the null hypothesis,

H0 : pi =

∫
z∈Ai

fθ(z) dz = pi(θ), i = 1, . . . , k − 1,

versus the alternative,

HA : H0 is wrong,

where fθ(·) is a probability density function indexed by θ ∈ Θ.

Then, one can use the likelihood ratio statistics

−2 log Λn
d−→ χ2(k − 1− dim(Θ)),

where

Λn =
supθ∈Θ L(p1(θ), · · · , pk−1(θ))

sup∑k
i=1 pi=1 L(p1, . . . , pk−1)

=

∏k
j=1(pj(θ̂))Oj∏k

j=1 p̂
Oj
j

,

where p̂j = Oj/n, and reject H0 if −2 log Λn is large.

In the following, I’ll show that

k∑
j=1

(Oj − npj(θ̂))2

npj(θ̂)

d−−→
H0

χ2(k − 1− dim(Θ)).
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Pearson’s Chi-Squared Test with unknown parameters

Note that under H0,

−2 log Λn = 2
k∑
j=1

Oj log

(
p̂j

pj(θ̂)
− 1 + 1

)

·∼ 2
k∑
j=1

Oj

{
p̂j − pj(θ̂)

pj(θ̂)
−

1

2

[
p̂j − pj(θ̂)

pj(θ̂)

]2}

= 2

k∑
j=1

Oj

{
p̂j − pj(θ̂)

p̂j

(
p̂j

pj(θ̂)
− 1 + 1

)
−

1

2

[
(p̂j − pj(θ̂))2

p̂jpj(θ̂)

(
p̂j

pj(θ̂)
− 1 + 1

)]}

= 2
k∑
j=1

Oj
p̂j − pj(θ̂)

p̂j
+

k∑
j=1

Oj
(p̂j − pj(θ̂))2

p̂jpj(θ̂)
−

k∑
j=1

Oj
(p̂j − pj(θ̂))2

p̂jpj(θ̂)

(
p̂j − pj(θ̂)

pj(θ̂)

)

= 2n
k∑
j=1

(p̂j − pj(θ̂)) +
k∑
j=1

Oj
(p̂j − pj(θ̂))2

p̂jpj(θ̂)
−

k∑
j=1

Oj
(p̂j − pj(θ̂))2

p̂jpj(θ̂)

(
p̂j − pj(θ̂)

pj(θ̂)

)

=

k∑
j=1

Oj
(p̂j − pj(θ̂))2

p̂jpj(θ̂)
−

k∑
j=1

Oj
(p̂j − pj(θ̂))2

p̂jpj(θ̂)

(
p̂j − pj(θ̂)

pj(θ̂)

)

=
k∑
j=1

Oj
(p̂j − pj(θ̂))2

p̂jpj(θ̂)
(1 + op(1))

(
under H0, max

1≤i≤k

∣∣∣∣∣ p̂i − pi(θ̂)

pi(θ̂)

∣∣∣∣∣ = op(1)

)

=

k∑
j=1

(Oj − npj(θ̂))2

npj(θ̂)
(1 + op(1)).
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Pearson’s Chi-Squared Test with unknown parameters

Hence, by the following Lamma,

−2 log Λn −
k∑
j=1

(Oj − npj(θ̂))2

npj(θ̂)
= op(1).

Lemma: If An = Bn(1 + op(1)) and An = Op(1), then An −Bn
pr.−−→ 0.

Proof. Note that An − Bn = (Bn − An + An)op(1) = (Bn − An)op(1) + op(1), which implies

(An −Bn)(1 + op(1)) = op(1), and hence An −Bn =
op(1)

1+op(1)
= op(1).

By Slutsky’s Theorem,

k∑
j=1

(Oj − npj(θ̂))2

npj(θ̂)

d−−→
H0

χ2(k − 1− dim(Θ)).

Therefore, −2 log Λn and
∑k
j=1

(Oj−npj(θ̂))2

npj(θ̂)
have the same limiting distribution.
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Pearson’s Chi-Squared Test with unknown parameters

Application

Assume that there are r rows and s columns in the contingency table, and the total number in
the table is n. Let Oij be the observed frequency for the ith row and jth column, and pij be the
probability that an observation falls into the ith row and jth column. Define pi· =

∑s
j=1 pij and

p·j =
∑r
i=1 pij . For the hypothesis

H0 : pij = pi·p·j for i = 1, . . . , r and j = 1, . . . , s, versus HA : H0 is wrong,

the test statistic is

r∑
i=1

s∑
j=1

(Oij − np̂i·p̂·j)2

np̂i·p̂·j

d−−→
H0

χ2((r − 1)(s− 1)),

where p̂i· =
∑s
j=1Oij/n and p̂·j =

∑r
i=1Oij/n.

Remark

rs− 1− (r − 1)− (s− 1) = rs− 1− r + 1− s+ 1 = rs− r − s+ 1 = (r − 1)(s− 1).
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Akaike’s information criterion (AIC)

Let

g(y∗) = g(y∗1 , . . . , y
∗
n) denote the likelihood function of y∗ (true pdf of y∗)

and

fθ(y∗) is a family of approximation models indexed by θ (a family of pdfs indexed by θ).

The ”distance” between g(y∗) and fθ(y∗) is measured by Kullback-Leibler distance

KL(fθ , g) = −Eg
(

log
fθ(y∗)

g(y∗)

)
= −Eg(log fθ(y∗)) + Eg(log g(y∗)). (18)

Remark

KL(g, g) = 0 and KL(fθ , g) ≥ 0, since − log t is a convex function, leading to

E(− logX) ≥ − logE(X)

by Jensen’s inequality.
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Akaike’s information criterion (AIC)

More specifically, letting

X =
fθ(y∗)

g(y∗)
,

we have by Jensen’s inequality and the convexity of − log t,

Eg

(
− log

fθ(y∗)

g(y∗)

)
≥ − logEg

(
fθ(y∗)

g(y∗)

)
.

Moreover,

Eg

(
fθ(y∗)

g(y∗)

)
=

∫
fθ(y∗)

g(y∗)
g(y∗) dy∗ =

∫
fθ(y∗) dy∗ = 1

because fθ(y∗) is a pdf and hence integrates to ”1”.
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Akaike’s information criterion (AIC)

Note that Jensen’s inequality says that for any convex function h(·), and rnadom variable X,

E(h(X)) ≥ h(E(X)),

whenever the expectations exist. For example,

E(X2) ≥ (EX)2,

−E(logX) ≥ − logEX,

E(eX) ≥ eE(X),

...
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Akaike’s information criterion (AIC)

In the derivation of AIC, y∗ is regarded as the ”future”, whereas y, an independent copy of
y∗ (namely y and y∗ are independent, but have the same distribution.), denotes the
observations at hand.

Since the factor Eg(log g(y∗)) in (18) will be cancelled out when comparing across
different approximation models (families), the goal here is to construct an asymptotically
unbiased estimate of

−Eg(log fθ̂(y)(y
∗)), (g: true model; θ̂(y): present; y∗: future)

in which θ̂(y) is the MLE of θ using observations y.

A natural estimate of −Eg(log fθ̂(y)(y
∗)) is given by

− log fθ̂(y)(y), (g → unknown → dropped here; y∗ is replaced by y)

the log likelihood function of y based on fθ(·).

However, a ”bias correction” term is needed to achieve asymptotic unbiasedness.
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Akaike’s information criterion (AIC)

To find the bias correction term, note first that by Taylor’s theorem,

Eg(log fθ̂(y)(y
∗)) = Eg(log fθ0 (y∗))

+Eg

[(
∂ log fθ0 (y∗)

∂θ

)′
(θ̂(y)− θ0)

]

+
1

2
Eg

[
(θ̂(y)− θ0)′

(
∂2 log fθ∗ (y∗)

∂θi∂θj

)
(θ̂(y)− θ0)

]
, (19)

where θ0 = argmin
θ∈Θ

KL(fθ , g) and ‖θ∗ − θ0‖ ≤ ‖θ̂(y)− θ0‖.
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Akaike’s information criterion (AIC)

Assume fθ0 = g (the true model is included among the approximation family). (19) becomes

Eg(log fθ̂(y)(y
∗))

= Efθ0
(log fθ0 (y∗)) + Efθ0

[(
∂ log fθ0 (y∗)

∂θ

)′
(θ̂(y)− θ0)

]

+
1

2
Efθ0

[
(θ̂(y)− θ0)′

∂2 log fθ∗ (y∗)

∂θi∂θj
(θ̂(y)− θ0)

]
.∼ Efθ0

(log fθ0 (y∗)) +
1

2
Efθ0

[
(θ̂(y)− θ0)′

∂2 log fθ0 (y∗)

∂θi∂θj
(θ̂(y)− θ0)

]
(20)

because θ∗
.∼ θ0 and

Efθ0

[(
∂ log fθ0 (y∗)

∂θ

)′
(θ̂(y)− θ0)

]

= Efθ0

(
∂ log fθ0 (y∗)

∂θ

)′
E(θ̂(y)− θ0) (y∗ and y are independent)

= 0.

(
Efθ0

(
∂ log fθ0 (y∗)

∂θ

)
= 0

)
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Akaike’s information criterion (AIC)

Moreover, assume

lim
n→∞

1

n
Efθ0

(
−
∂2 log fθ0 (y∗)

∂θi∂θj

)
= I(θ0) exist. (y∗ can also be replaced by y)

Then, we have shown (heuristically) that

√
n(θ̂(y)− θ0)

d−→ N(0, I−1(θ0)),

and

−
1

n

∂2 log fθ0 (y∗)

∂θi∂θj

pr.−−→ I(θ0),

leading to

−(θ̂(y)− θ0)′
∂2 log fθ0 (y∗)

∂θi∂θj
(θ̂(y)− θ0)

d−→ χ2(p),

assuming θ is a p-dimensional vector.

As a result, (20) becomes

Efθ0
(log fθ̂(y)(y

∗))

.∼ Efθ0
(log fθ0 (y∗))−

p

2

= Efθ0
(log fθ0 (y))−

p

2
(this replacement won’t change anything) (21)
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Akaike’s information criterion (AIC)

By Taylor’s expansion again,

log fθ0 (y) = log fθ̂(y)(y) +

(
∂ log fθ̂(y)(y)

∂θ

)′
(θ0 − θ̂(y))

+
1

2
(θ̂(y)− θ0)′

(
∂2 log fθ̌(y)

∂θi∂θj

)
(θ̂(y)− θ0),

where ‖θ̌ − θ0‖ ≤ ‖θ̂(y)− θ0‖.
Since

∂ log fθ̂(y)(y)

∂θ
= 0 (why?)

and

−(θ̂(y)− θ0)′
∂2 log fθ̌(y)

∂θi∂θj
(θ̂(y)− θ0)

.∼ −(θ̂(y)− θ0)′
∂2 log fθ0 (y)

∂θi∂θj
(θ̂(y)− θ0)

d−→ χ2(p),

it follows that

Efθ0
(log fθ0 (y))

.∼ Efθ0 (log fθ̂(y)(y))−
p

2
. (22)
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Akaike’s information criterion (AIC)

Combining (21) and (22) yields

−Efθ0 (log fθ̂(y)(y
∗))

.∼ Efθ0 (− log fθ̂(y)(y) + p). (23)

This is what we call ”asymptotic unbiasedness”. (p: This is our bias correction term!!)

Now, the definition of AIC is given by

−2 log fθ̂(y) + 2p,

which is the quantity inside the expectation on the RHS of (23) multiplied by ”2”.
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More on information criteria

Let

fθ(y,x1, . . . ,xn) = (2πσ2)−
n
2 exp

{
−

1

2σ2

n∑
i=1

(yi − x′iβ)2

}
, (24)

where θ = (β′, σ2)′. Then, the MLE of θ is θ̂ = (β̂′, σ̂2)′, where

β̂ = (X′X)−1X′y, σ̂2 =
1

n

n∑
i=1

(yi − x′iβ̂)2, and X =

x
′
1
...
x′n

 ,

yielding

log fθ̂(·) = −
n

2
(log(2π) + log σ̂2)−

1

2σ̂2

n∑
i=1

(yi − x′iβ̂)2

= −
n

2
log(2π)−

n

2
−
n

2
log σ̂2.

(−n
2

log(2π)− n
2

: this part is independent of the model)
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Therefore, the essential part of AIC is

n log σ̂2 + 2dim(β), (25)

noting that the number of parameters in model (24) is dim(β) + 1 in which ”1” will be
cancelled out when model comparisons are performed.

In most practical situations, the distribution of error in model (24) is unknown. Therefore,
AIC is in general not obtainable. But we can still ”borrow” the AIC obtained in the
Gaussian case, namely (25), to do model selection.
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Bayesian information criterion (BIC)

Bayesian information criterion (BIC)

Bayesian information criterion (BIC):

−2 log fθ̂(y) + logn ](estimated parameters)

logn: in contrast to ”2” for AIC
](estimated parameters): the number of meaning estimated parameters

BIC in linear regression model with Gaussian error:

n log σ̂2 + logn dim(β).
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Bayesian information criterion (BIC)

Consistency of BIC in regression models

Consider a linear model

yt = x′tβ + εt, εt
i.i.d.∼ (0, σ2)

where xt = (xt1, . . . , xtK)′ and β = (β1, . . . , βK)′ in which some of βi may equal 0.

Define J0 = {βi : 1 ≤ i ≤ K,βi 6= 0} and

BIC(J) = n log σ̂2
J + logn× ](J),

where J is a subset of K = {1, . . . ,K}, ](J) is the number of elements in J ,

σ̂2
J =

1

n

n∑
t=1

(yt − x′t(J)β̂(J))2

is the residual mean squared error of model J , with xt(J) = (xti, i ∈ J) and

β̂(J) =

(
n∑
t=1

xt(J)x′t(J)

)−1 n∑
t=1

xt(J)yt

denoting the LSE of model J .
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More on information criteria

Bayesian information criterion (BIC)

Define

Ĵ = argmin
J⊆2K

BIC(J),

where 2K denotes all subsets of K.

In the following, I shall show that

lim
n→∞

P (Ĵ = J0) = 1, (J0 : true model) (26)

”without” assuming that εt are Gaussian.
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Bayesian information criterion (BIC)

Proof

If we can show that for J0 − J = ∅ and ](J) > ](J0) (J嚴格包含 J0),

P (BIC(J) ≤ BIC(J0)) −−−−→
n→∞

0, (27)

and for J0 − J 6= ∅ (J不包含 J0),

P (BIC(J) ≤ BIC(J0)) −−−−→
n→∞

0, (28)

then combining (27) and (28) leads to the desired conclusion (26).

To show (27), note first that

{BIC(J) ≤ BIC(J0)} = {n(log σ̂2
J0
− log σ̂2

J ) ≥ logn(](J)− ](J0))}. (29)
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Bayesian information criterion (BIC)

Moreover, since

n(log σ̂2
J0
− log σ̂2

J ) = n

(
log

(
1 +

σ̂2
J0
− σ̂2

J

σ̂2
J

))
.∼

n

σ2
(σ̂2
J0
− σ̂2

J )

=
1

σ2
ε′(MJ −MJ0 )ε

≤
1

σ2
ε′MJε,

and since
1

σ2
E(ε′MJε) = ](J) <∞,

we have

n(log σ̂2
J0
− log σ̂2

J ) = Op(1). (why?) (30)

.∼ holds due to ”correctness” of those two models (σ̂2
J0

pr.−−→ σ2 and σ̂2
J

pr.−−→ σ2) and by
Taylor’s expansion.

MJ and MJ0 are orthogonal projection matrices for the column spaces of

XJ =

x
′
1(J)

...
x′n(J)

 and XJ0 =

x
′
1(J0)

...
x′n(J0)

 .
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Bayesian information criterion (BIC)

Now, (27) follows directly from (29), (30) and logn→∞.

To show (28), define

J∗ = J ∪ J0, and J− = J0 − J,

noting that J∗ = J ∪ J− and J ∩ J− = ∅.

In view of (27), (28) is guaranteed by

P (BIC(J) ≤ BIC(J∗)) −−−−→
n→∞

0. (31)

It is clear that

{BIC(J) ≤ BIC(J∗)} = {n(log σ̂2
J − log σ̂2

J∗ ) ≤ logn(](J∗)− ](J))},

and log σ̂2
J∗

pr.−−→ log σ2.
(32)

(Since J∗ is a correct model, namely, a model including J0 as a subset model)
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Bayesian information criterion (BIC)

In addition, we have

y = XJ∗βJ∗ + ε, (why?)

where βJ∗ = (βj , j ∈ J∗), and hence

σ̂2
J =

1

n
y′(I −MJ )y

=
1

n
y′(I −MJ )(I −MJ )(XJβJ +XJ−βJ− + ε)

=
1

n
y′(I −MJ )(I −MJ )(XJ−βJ− + ε)

=
1

n
(XJ−βJ− + ε)′(I −MJ )(XJ−βJ− + ε)

= β′J−

(
1

n
X′J− (I −MJ )XJ−

)
βJ− +

1

n
ε′ε−

1

n
ε′MJε+

2

n
β′J−X

′
J−

(I −MJ )ε

≡ (I) + (II) + (III) + (IV). (33)
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Bayesian information criterion (BIC)

Define B̂ = (X′JXJ )−1X′JXJ− . Then

X′J− (I −MJ )XJ− (I: this is the identity matrix of dimension ](J−))

= (I,−B̂′)
(
X′J−
XJ

)
(XJ− ,XJ )

(
I

−B̂

)
= (I,−B̂′)X′J∗XJ∗

(
I

−B̂

)
,

and hence

λmin(X′J− (I −MJ )XJ− ) ≥ λmin(X′J∗XJ∗ )λmin

(
(I,−B̂′)

(
I

−B̂

))
= λmin(X′J∗XJ∗ )λmin(I + B̂′B̂)

≥ λmin(X′J∗XJ∗ ).
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Bayesian information criterion (BIC)

Assume

1

n
X′X −−−−→

n→∞
R with λmin(R) > 0. (34)

Then,

λmin

(
X′J− (I −MJ )XJ−

n

)
≥ λmin

(
X′J∗XJ∗

n

)
this is obvious
≥ λmin

(
X′X

n

)
by assumption−−−−−−−−→ λmin(R) > 0. (35)
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Bayesian information criterion (BIC)

Therefore,

(I)
by (34)−−−−→ V (J−) ≥ ‖βJ−‖

2 lim
n→∞

λmin

(
1

n
X′J− (I −MJ )XJ−

)
> 0, (36)

where

V (J−) = β′J−

(
lim
n→∞

1

n
X′J− (I −MJ )XJ−

)
βJ− .

‖βJ−‖2 > 0 because βJ− contains non-zero coefficients

by (35), limn→∞ λmin

(
1
n
X ′J−(I −MJ)XJ−

)
> 0

Moreover, it is easy to see that

1

n
ε′ε→ σ2 in probability, (37)

1

n
ε′MJε→ 0 in probability, (38)

and

E(IV)2 ≤
4σ2

n
‖βJ−‖

2λmax

(
X′X

n

)
by (34)−−−−→ 0. (39)
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More on information criteria

Bayesian information criterion (BIC)

Now, it follows from (33) and (36)–(39) that

log σ̂2
J

pr.−−→ log(σ2 + V (J−)),

which, together with the second equation of (32), yields

log σ̂2
J − log σ̂2

J∗
pr.−−→ log(σ2 + V (J−))− log σ2 > 0. (40)

Equation (40) and the first equation of (32) imply

P (BIC(J) ≤ BIC(J∗))

= P

(
log σ̂2

J − log σ̂2
J∗ ≤

logn

n
(](J∗)− ](J))

)
−−−−→
n→∞

0,

(
logn

n
→ 0

)
which is (28). Thus, the proof is complete.
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A Newton-Raphson method and its asymptotics

Define

η̂New = η̃ −
(
∂2`(η̃)

∂ηi∂ηj

)−1
∂`(η̃)

∂η
,

where `(η) is the log-likelihood function and η̃ is an initial estimate of the true parameter
η0 .

In the following, I’ll show that if

‖η̃ − η0‖ = op(n−
1
4 ), (41)

then

√
n(η̂New − η0 )

d−→ N(0, I−1(η0 )),

where I(η0 ) is the Fisher information matrix.
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A Newton-Raphson method and its asymptotics

Sketch

η̂New = η̃ −
(
∂2`(η̃)

∂ηi∂ηj

)−1 (
∂`(η̃)

∂η
−
∂`(η0 )

∂η

)
−
(
∂2`(η̃)

∂ηi∂ηj

)−1
∂`(η0 )

∂η

By Taylor’s theorem,

∂`(η0 )

∂η
=

∂`(η̃)

∂η
+
∂2`(η̃)

∂ηi∂ηj
(η0 − η̃) +

γ1

...
γp

 , (42)

where

γk =
1

2

p∑
i=1

p∑
j=1

∂3`(η∗k)

∂ηk∂ηi∂ηj
(η0,i − η̃i)(η0,j − η̃j)

with η̃1...
η̃p

 = η̃,

η0,1...
η0,p

 = η0 and ‖η̃ − η0‖ ≥ ‖η
∗
k
− η0‖, k = 1, . . . , p.

(assuming there are p parameters)
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A Newton-Raphson method and its asymptotics

Assume Condition (ii) in the proof of the consistency of the MLE holds, and there exists
δ > 0 such that

sup
η∈Bδ(η0 )

1

n

∂3`(η)

∂ηk∂ηi∂ηj
= Op(1).

Then, by (41) and (42), one gets

η̂New = η̃ − (η̃ − η0 ) + op(n−
1
2 )−

(
∂2`(η̃)

∂ηi∂ηj

)−1
∂`(η0 )

∂η
,

and hence

√
n(η̂New − η0 ) = op(1)−

(
1

n

∂2`(η̃)

∂ηi∂ηj

)−1
1
√
n

∂`(η0 )

∂η
. (43)
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By (41) and an argument similar to that used to prove (42), the RHS of (43) becomes(
−

1

n

∂2`(η0 )

∂ηi∂ηj

)−1
1
√
n

∂`(η0 )

∂η
+ op(1),

and hence the desired conclusion follows from

1
√
n

∂`(η0 )

∂η

d−→ N(0, I(η0 )),

and

−
1

n

∂2`(η0 )

∂ηi∂ηj

pr.−−→ I(η0 ).

Question

Please show that if (41) is replaced by

‖η̃ − η0‖ = Op(n
− 1
q )

for some q ≥ 4, then

‖η̂New − η0‖ = Op(n
− 2
q ).
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A Newton-Raphson method and its asymptotics

Example

Assume

yi = x′iβ0 + ai, i = 1, . . . , n,

where ai = σiεi, εi
iid∼ N(0, 1), σ2

i = exp{x′iα0}, and xi is a (p+ 1)-dimensional
explanatory vector with 1 as its first component (namely the intercept term is included).

Assume also 1 ≤ ‖xi‖ ≤M for some 1 < M <∞ and

1

n
X′X → R (p.d.), where X =

x
′
1
...
x′n

 .

Then, it is not difficult to see that the LSE of β0,

β̂ = (X′X)−1X′y, where y =

y1

...
yn

 ,

satisfies

β̂ − β0 = Op(n−
1
2 ). (44)
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In the following, I’ll construct an initial estimate of

θ0 =


u+ α0,0

α0,1

...
α0,p

 , where

α0,0

...
α0,p

 = α0 and u = E(log ε2i ).

Define

ãi = yi − x′iβ̂ = ai − x′i(β̂ − β0),

and

âi =

{
ãi, if |ãi| > n−ξ,

n−ξ, if |ãi| ≤ n−ξ,

where 0 < ξ < 1
2
− θ1. Let An = {‖β̂ − β0‖ ≤ n−

1
2

+θ1}, θ1 > 0 is a small positive
number.

By (44), it holds that

lim
n→∞

P (An) = 1. (45)
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A Newton-Raphson method and its asymptotics

Let

θ̂ = (X′X)−1X′z, where z =

log â2
1

...
log â2

n

 .

Since

log â2
i = x′iθ0 + (log â2

i − log a2
i ) + (log ε2i − u),

we obtain

θ̂ − θ0 =

(
1

n
X′X

)−1 1

n

n∑
i=1

xi(log ε2i − u)

+

(
1

n
X′X

)−1 1

n

n∑
i=1

xi(log â2
i − log a2

i )I|ai|<n−θ

+

(
1

n
X′X

)−1 1

n

n∑
i=1

xi(log â2
i − log a2

i )I|ai|>n−θ

≡ (I) + (II) + (III),

where ξ < θ < 1
2
− θ1.
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A Newton-Raphson method and its asymptotics

It is easy to see that

(I) = Op(n−
1
2 ). (46)

Denote xi by

 xi1
...

xi,p+1

 . Then, we have for 1 ≤ j ≤ p+ 1,

E

{
1

n

n∑
i=1

∣∣xij(log â2
i − log a2

i )
∣∣ I|ai|<n−θ IAn

}
why?
≤ C lognP (a2

i < n−2θ) + CP
1
2 (a2

i < n−2θ) (C : some positive constant)

why?
≤ C∗n−

θ
2 . (C∗ : some positive constant)

This, the positive definiteness of R, and (45) yield

(II) = Op(n−
θ
2 ). (47)
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A Newton-Raphson method and its asymptotics

Moreover,

E

∣∣∣∣∣ 1n
n∑
i=1

xij(log â2
i − log a2

i )I|ai|>n−θ IAn

∣∣∣∣∣
why?
≤ E

∣∣∣∣∣Cn
n∑
i=1

|xij |
|x′i(β̂ − β0)|
|ai|

I|ai|>n−θ IAn

∣∣∣∣∣ (C : some positive constant)

why?
≤ C∗nθ−

1
2

+θ1 . (C∗ : some positive constant)

This, the positive definiteness of R, and (45) imply

(III) = Op(n−
1
2

+θ1+θ),

which, together with (46) and (47), gives

θ̂ − θ0 = Op(n−ζ) (48)

with ζ = min{ 1
2
− θ1 − θ, θ2}.
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A Newton-Raphson method and its asymptotics

Remark

Recall that the location-dispersion model is

yi = x′iβ + exp

{
1

2
x′iα

}
εi, i = 1, . . . , n,

with εi
i.i.d.∼ N(0, 1) and the log-likelihood function is

`(β,α) = −
n

2
log (2π)−

1

2

n∑
i=1

x′iα−
1

2

n∑
i=1

(yi − x′iβ)2e−x
′
iα.

The function −`(β,α) is not jointly convex in coefficients (β,α). This also reveals the
importance of finding a good initial estimate of the true parameters.
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A Newton-Raphson method and its asymptotics

Model

yt = βxt + ηt, t = 1, 2, . . . , n,

ηt = σtεt,

σ2
t = exp {αxt}

Function

f(β, α) =

n∑
i=1

(αxi) +

n∑
j=1

(yj − βxj)2

exp{αxj}

Setting

xt
i.i.d.∼ N(0, 1)

εt
i.i.d.∼ N(0, 1)

β = 1 and α = 2

n = 10
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A Newton-Raphson method and its asymptotics

3D plot and contour plot
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A Newton-Raphson method and its asymptotics

Question

Define

α̃0 = log
1

n

n∑
i=1

â2
i

exi1θ̂1+···+xipθ̂p
,

where 
θ̂0
θ̂1
...

θ̂p

 = θ̂.

a. Please show that α̃0 − α0,0 = Op(n−δ) for some δ > 0.

b. Can you obtain similar results when εi’s are non-Gaussian?
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Asymptotics for the MLEs of Weibull distribution
parameters

Weibull distribution

f(x) =
α0

λα0
0

xα0−1 exp

{
−
(
x

λ0

)α0
}
, (49)

where x > 0, λ0 > 0 is called the scale parameter, and α0 > 0 is called the shape
parameter.

The density function (49) can be rewritted as

f(x) =
α0

η0
xα0−1 exp

{
−
xα0

η0

}
, x > 0, α0 > 0, η0 > 0,

in which η0 = λα0
0 .
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Define the average log-likelihood function

1

n
`(α, η) = log

α

η
+ (α− 1)

1

n

n∑
i=1

log xi −
1

η

1

n

n∑
i=1

xαi .

Then

1

n
{`(α0, η0 )− `(α, η)}

= log
α0

η0
− log

α

η
+ (α0 − α)

1

n

n∑
i=1

(log xi − E(log xi))

+(α0 − α)E(log xi)−
1

n

n∑
i=1

xα0
i − Ex

α0
i

η0

+
1

n

n∑
i=1

xαi − Exαi
η

+
Exαi
η
−
Exα0

i

η0
. (50)
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Note that

E(log xi) =
1

α0

∫ ∞
0

(
log

xα0
i

η0
+ log η0

)
α0

η0
xα0−1
i e

−
x
α0
i
η0 dxi

=
1

α0

∫ ∞
0

log u e−u du+
1

α0
log η0

=
1

α0
(−γ + log η0 ),

where γ = limn→∞
(
logn−

∑n
i=1

1
i

) .∼ 0.5772. (γ: Euler-Mascheroni constant)

In addition, it holds that for m > −α0,

E(xmi ) = η
m
α0
0 Γ

(
m

α0
+ 1

)
,

and by the Weierstrass product for the Γ function,

Γ′(z + 1)

Γ(z)
= −γ +

∑
i≥1

1

i
−

1

i+ z
, z > 0. (51)
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(51) implies

d

dz

Γ′(z + 1)

Γ(z)
=

Γ(z + 1)Γ′′(z + 1)− (Γ′(z + 1))2

Γ2(z)
=
∑
i≥1

1

(i+ z)2
> 0, z > 0,

and hence

Γ′′(z + 1)

Γ(z)
≥
(

Γ′(z + 1)

Γ(z)

)2

, z > 0. (52)

Now, for (α, η) ∈ [δ1,M1]× [δ2,M2], where 0 < δ1, δ2 <∞ are small constants and
0 < M1,M2 <∞ are large constants,

1

n
{`(α0, η0 )− `(α, η)}

= (α0 − α)
1

n

n∑
i=1

{log xi − E(log xi)} −
1

n

n∑
i=1

(
xα0
i

η0
− 1

)

+
1

n

n∑
i=1

{
xαi
η
−
Exαi
η

}
+ g(α0, η0 )− g(α, η)

≡ (I) + (II) + (III) + (IV), (53)

where (IV) = g(α0, η0 )− g(α, η) and

g(α, η) = log
α

η
+ αE(log xi)−

η
α
α0
0 Γ( α

α0
+ 1)

η
.
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In the following, I shall show that

(i) (α0, η0 ) is the only critical point satisfying

∂g(α, η)

∂α
= 0 and

∂g(α, η)

∂η
= 0,

(ii) there exist small positive constants s1 and s2 such that

g(α0, η0 )− g(α, η) ≥ s2‖v − v0‖2

for all v = (α, η)′ ∈ Bs1 (v0), where v0 = (α0, η0 )′,

(iii) (α0, η0 ) is the unique maximizer of g(α, η).

To show (i), note that

∂g(α, η)

∂η
= 0 ⇐⇒ η = η

α
α0
0 Γ

(
α

α0
+ 1

)
,

and

d

dα
g

(
α, η

α
α0
0 Γ

(
α

α0
+ 1

))
= 0

why?⇐⇒
∑
i≥1

(
1

i
−

1

i+ α
α0

)
=

1
α
α0

. (54)
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Since the RHS (LHS) of (54) is decreasing (increasing) in α
α0

, and α
α0

= 1 is a solution of

the equation, the desired conclusion (i) follows (why?).

To show (ii), note first that by (i) and Taylor’s theorem, one has for ‖v − v0‖ ≤ δ with δ
being arbitrarily small,

g(α, η) = g(α0, η0 )−
1

2
(α− α0, η − η0 )′

 ∂2g(α∗,η∗)
∂α2

∂2g(α∗,η∗)
∂α∂η

∂2g(α∗,η∗)
∂η∂α

∂2g(α∗,η∗)
∂η2

(α− α0

η − η0

)
, (55)

where

g(α, η) =
η
α
α0
0 Γ

(
α
α0

+ 1
)

η
− log

α

η
and

∥∥∥∥(α∗ − α0

η∗ − η0

)∥∥∥∥ ≤ ∥∥∥∥(α− α0

η − η0

)∥∥∥∥ ≤ δ.
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It is straightforward to see that

∂2g(α, η)

∂α2
=
η
α
α0
0

η

[(
log η0
α0

)2

Γ

(
α

α0
+ 1

)
+

2 log η0
α2

0

Γ′
(
α

α0
+ 1

)
+

Γ′′( α
α0

+ 1)

α2
0

]
+

1

α2
,

∂2g(α, η)

∂η2
=
η
α
α0
0

η

2Γ
(
α
α0

+ 1
)

η2

− 1

η2
,

∂2g(α, η)

∂α∂η
=
η
α
α0
0

η

{
−

1

α0η

[
log η0 Γ

(
α

α0
+ 1

)
+ Γ′

(
α

α0
+ 1

)]}
.
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Since ‖v − v0‖ ≤ δ with δ being arbitrarily small, there exists an arbitrarily small θδ > 0 such
that for all ‖v − v0‖ ≤ δ,

η
α
α0
0

η

2Γ
(
α
α0

+ 1
)

η2

− 1

η2
≥ (1− θδ)

η
α
α0
0

η

Γ
(
α
α0

+ 1
)

η2
,

which, together with (52), yields

det

 ∂2g(α,η)

∂α2
∂2g(α,η)
∂α∂η

∂2g(α,η)
∂η∂α

∂2g(α,η)

∂η2


≥

η
α
α0
0

η

2 (
1

α0η

)2 {
(1− θδ)

[
(log η0 )2Γ2

(
α

α0
+ 1

)

+2 log η0 Γ′
(
α

α0
+ 1

)
Γ

(
α

α0
+ 1

)
+ Γ′′

(
α

α0
+ 1

)
Γ

(
α

α0
+ 1

)]
−
[(

log η0 Γ

(
α

α0
+ 1

))2

+ 2 log η0 Γ

(
α

α0
+ 1

)
Γ′
(
α

α0
+ 1

)
+

(
Γ′
(
α

α0
+ 1

))2
]}

> c,

for some small c > 0 depending only on δ and θδ.
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Therefore,

inf
v∈Bδ(v0)

λmin

 ∂2g(α,η)

∂α2
∂2g(α,η)
∂α∂η

∂2g(α,η)
∂η∂α

∂2g(α,η)

∂η2

 why?
> c∗, (56)

for some c∗ > 0.

By (55) and (56), it holds that for ‖v − v0‖ ≤ δ,

g(α0, η0 )− g(α, η) ≥
c∗

2
‖v − v0‖2,

and hence (ii) follows.

Now, (iii) follows directly from (i), (ii) and the differentiability of g(α, β).
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In view of (i)–(iii) and (53), the consistency of

(α̂, η̂) = argmax
(α,η)∈[δ1,M1]×[δ2,M2]

1

n
`(α, η)

is ensured by

sup
α∈[δ1,M1]

|(I)| = op(1), |(II)| = op(1), (57)

sup
(α,η)∈[δ1,M1]×[δ2,M2]

|(III)| = op(1). (58)

(57) is an immediate consequence of the (classical) law of large numbers, whereas (58)
relies on the so-called uniform law of large numbers.

In the following, I’ll provide a proof of (58).
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Note first that (58) is guaranteed by (why?)

sup
α∈[δ1,M1]

∣∣∣∣∣ 1n
n∑
i=1

xαi − E(xαi )

∣∣∣∣∣ = op(1). (59)

Define gt(α) = xαt − E(xαt ). Then,

E sup
α∈[δ1,M1]

(
1

n

n∑
t=1

gt(α)− gt(α0)

)2

≤
why?

(M1 − δ1)E


∫ M1

δ1

(
1

n

n∑
t=1

g′t(x)

)2

dx


≤

why?
(M1 − δ1)2 sup

α∈[δ1,M1]
E

(
1

n

n∑
t=1

g′t(α)

)2

≤
why?

(M1 − δ1)2

η
sup

α∈[δ1,M1]
V ar(xα1 log x1) = O(n−1),

which implies

sup
α∈[δ1,M1]

1

n

n∑
t=1

gt(α)− gt(α0)
why?
= Op(n−

1
2 ). (60)
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Moreover, it is easy to see that

1

n

n∑
t=1

gt(α0) = Op(n−
1
2 ). (61)

Combining (60) and (61) gives (59). Thus, the proof is complete.

Question

Please find the limiting distribution of (α̂, η̂).
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